Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An important stage in tumorigenesis is the ability of a precancerous cell to escape natural anticancer signals imposed on it by neighboring cells and its microenvironment. We have previously characterized a system of intercellular induction of apoptosis whereby nontransformed cells selectively remove transformed cells from coculture via cytokine and reactive oxygen/nitrogen species (ROS/RNS) signaling. We report that irradiation of nontransformed cells with low doses of either high linear energy transfer (LET) alpha-particles or low-LET gamma-rays leads to stimulation of intercellular induction of apoptosis. The use of scavengers and inhibitors confirms the involvement of ROS/RNS signaling and of the importance of transformed cell NADPH oxidase in the selectivity of the system. Doses as low as 2-mGy gamma-rays and 0.29-mGy alpha-particles were sufficient to produce an observable increase in transformed cell apoptosis. This radiation-stimulated effect saturates at very low doses (50 mGy for gamma-rays and 25 mGy for alpha-particles). The use of transforming growth factor-beta (TGF-beta) neutralizing antibody confirms a role for the cytokine in the radiation-induced signaling. The system may represent a natural anticancer mechanism stimulated by extremely low doses of ionizing radiation.

Original publication

DOI

10.1158/0008-5472.CAN-06-2985

Type

Journal article

Journal

Cancer Res

Publication Date

01/02/2007

Volume

67

Pages

1246 - 1253

Keywords

Alpha Particles, Animals, Antibodies, Apoptosis, Cell Line, Transformed, Cell Transformation, Neoplastic, Dose-Response Relationship, Radiation, Fibroblasts, Gamma Rays, NADPH Oxidases, Precancerous Conditions, Rats, Reactive Nitrogen Species, Reactive Oxygen Species, Signal Transduction, Transforming Growth Factor beta