Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transcription Activator-Like Effector Nucleases (TALENs) consist of a nuclease domain fused to a DNA binding domain which is engineered to bind to any genomic sequence. These chimeric enzymes can be used to introduce a double strand break at a specific genomic site which then can become the substrate for error-prone non-homologous end joining (NHEJ), generating mutations at the site of cleavage. In this report we investigate the feasibility of achieving targeted mutagenesis by microinjection of TALEN mRNA within the mouse oocyte. We achieved high rates of mutagenesis of the mouse Zic2 gene in all backgrounds examined including outbred CD1 and inbred C3H and C57BL/6J. Founder mutant Zic2 mice (eight independent alleles, with frameshift and deletion mutations) were created in C3H and C57BL/6J backgrounds. These mice transmitted the mutant alleles to the progeny with 100% efficiency, allowing the creation of inbred lines. Mutant mice display a curly tail phenotype consistent with Zic2 loss-of-function. The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required. This technology enables allelic series of mutations to be generated quickly and efficiently in diverse genetic backgrounds and will be a valuable approach to rapidly create mutations in mice already bearing one or more mutant alleles at other genetic loci without the need for lengthy backcrossing.

Original publication

DOI

10.1371/journal.pone.0060216

Type

Journal article

Journal

PLoS One

Publication Date

2013

Volume

8

Keywords

Animals, Endodeoxyribonucleases, Mice, Microinjections, Mutagenesis, Mutation, Oocytes, RNA, Messenger, Transcription Factors