Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Phosphate groups are often crucial to biological activity and interactions of oligonucleotides, but confer poor membrane permeability. In addition, the group's lability to enzymatic hydrolysis is an obstacle to its use in therapeutics and in biological tools. We present the synthesis of N-oxyamide and squaramide modifications at the 5’-end of oligonucleotides as phosphate replacements and their biological evaluation using the 5’-exonuclease SNM1A. The squaryl diamide modification showed minimal recognition as a 5’-phosphate mimic; however, modest inhibition of SNM1A, postulated to occur through metal coordination at the active site, was observed. Their facile incorporation after solid-phase synthesis and recognition by the exonuclease makes squaryl diamides attractive neutral 5’-phosphate replacements for oligonucleotides. This work is the first example of squaryl diamide modifications at the 5’-terminal position of oligonucleotides and of the potential use of modified oligonucleotides to bind to the metal center of SNM1A.

Original publication

DOI

10.1002/slct.201803375

Type

Journal article

Journal

ChemistrySelect

Publication Date

06/12/2018

Volume

3

Pages

12824 - 12829