Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The optimal treatment for potentially curable carcinoma of the oesophagus unsuitable for surgical resection is unresolved. An intraluminal brachytherapy boost (ILBT) can be used following external beam radiotherapy (EBRT) with or without concurrent chemotherapy (CRT). ILBT increases the dose to the tumour volume substantially while reducing the lung dose but the corresponding high dose to the oesophageal wall may cause increased complications. We report the outcomes of 32 consecutive patients treated with radical radiotherapy. A dose of 45-55 Gy in 20-25 fractions with external beam radiotherapy (EBRT) followed by an ILBT boost. Earlier in the series a low dose rate (LDR) brachytherapy technique using 125Iodine seeds delivering a dose of 20-22 Gy at 25-40 cGy/h was used. This was later superseded by high dose rate (HDR) treatments delivering 8.5-10 Gy in one fraction at 1 cm from the catheter. Patients of age below 76 years, of good performance status and with no other medical contraindication were considered for concurrent chemotherapy (CRT) using a planned regime of cisplatin (80 mg/m2 day 1) and 5-flurouracil (1 g/m2 days 1 to 4) in the first and last weeks of radiotherapy (13 patients). The EBRT and ILBT were well tolerated but 8/13 (62%) patients had dose modifications of chemotherapy in one or both cycles due to advanced age, co-morbidity or toxicity. The median follow-up period of surviving patients was 37 months (range 35-39) and the median overall survival for the whole group was 9 months. The overall survival at 1 year was 34.4% (17.6-51.2%), 15.6% (2.8-28.4%) at 2 and 3 years. Local recurrence-free survival at 1 year was 35.3% (15.9-54.7%) and 24.5% (8.3-44.6%) at 2 and 3 years (Fig. 2). Though symptom relief was good there were six cases of ulceration, six of stricture and two fistulae. Biological equivalent for tumour response (BED Gy10) and late radiation effects (BED Gy3) were calculated for the different radiotherapy regimens using equations derived from the linear quadratic model. In this series no advantage was found in terms of local control or survival for patients receiving radiotherapy doses resulting in a BED Gy10 greater than 75% of the maximum. Similarly, no significant increase in complications was noted in those patients receiving doses resulting in a BED Gy3 >75% of the maximum. The merits and hazards of the ILBT boost used in radical radiotherapy are discussed and the relevant literature reviewed. © 2002 Published by Elsevier Science Ltd on behalf of The Royal College of Radiologists.

Original publication

DOI

10.1053/clon.2001.0006

Type

Journal article

Journal

Clinical Oncology

Publication Date

01/01/2002

Volume

14

Pages

117 - 122