Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. METHODS AND MATERIALS: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to (111)In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of (111)In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. RESULTS: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to (111)In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. (111)In-DTPA-hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and (111)In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after (111)In-DTPA-hEGF plus SAHA compared to (111)In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect (111)In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and (111)In-DTPA-hEGF compared to controls but did not significantly alter clonogenic survival. CONCLUSIONS: Chromatin structure affects DNA damage and cell survival after exposure to Auger electron radiation.

Original publication

DOI

10.1016/j.ijrobp.2011.09.051

Type

Journal article

Journal

Int J Radiat Oncol Biol Phys

Publication Date

15/07/2012

Volume

83

Pages

1298 - 1305

Keywords

Analysis of Variance, Azacitidine, Cell Line, Tumor, Chromatin, DNA Damage, Decitabine, Electrons, Epidermal Growth Factor, ErbB Receptors, Histone Deacetylase Inhibitors, Histones, Humans, Hydroxamic Acids, Pentetic Acid, Radiation Tolerance, Radiopharmaceuticals, Radiotherapy, Sodium Chloride, Vorinostat