Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To decode the function and molecular recognition of several recently discovered cytosine derivatives in the human genome - 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine - a detailed understanding of their effects on the structural, chemical, and biophysical properties of DNA is essential. Here, we review recent literature in this area, with particular emphasis on features that have been proposed to enable the specific recognition of modified cytosine bases by DNA-binding proteins. These include electronic factors, modulation of base-pair stability, flexibility, and radical changes in duplex conformation. We explore these proposals and assess whether or not they are supported by current biophysical data. This analysis is focused primarily on the properties of epigenetically modified DNA itself, which provides a basis for discussion of the mechanisms of recognition by different proteins.

Original publication

DOI

10.1002/bies.201700199

Type

Journal article

Journal

Bioessays

Publication Date

03/2018

Volume

40

Keywords

5-carboxylcytosine, 5-formylcytosine, 5-hydroxymethylcytosine, 5-methylcytosine, DNA demethylation, DNA structure, epigenetics, thymine-DNA glycosylase