Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adaptation to low oxygen tension (hypoxia) is a critical event during development. The transcription factors Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α are essential mediators of the homeostatic responses that allow hypoxic cells to survive and differentiate. Von Hippel-Lindau protein (VHL) is the E3 ubiquitin ligase that targets HIFs to the proteasome for degradation in normoxia. We have previously demonstrated that the transcription factor HIF-1α is essential for survival and differentiation of growth plate chondrocytes, whereas HIF-2α is not necessary for fetal growth plate development. We have also shown that VHL is important for endochondral bone development, since loss of VHL in chondrocytes causes severe dwarfism. In this study, in order to expand our understanding of the role of VHL in chondrogenesis, we conditionally deleted VHL in mesenchymal progenitors of the limb bud, i.e. in cells not yet committed to the chondrocyte lineage. Deficiency of VHL in limb bud mesenchyme does not alter the timely differentiation of mesenchymal cells into chondrocytes. However, it causes structural collapse of the cartilaginous growth plate as a result of impaired proliferation, delayed terminal differentiation, and ectopic death of chondrocytes. This phenotype is associated to delayed replacement of cartilage by bone. Notably, loss of HIF-2α fully rescues the late formation of the bone marrow cavity in VHL mutant mice, though it does not affect any other detectable abnormality of the VHL mutant growth plates. Our findings demonstrate that VHL regulates bone morphogenesis as its loss considerably alters size, shape and overall development of the skeletal elements.

Original publication

DOI

10.1016/j.ydbio.2014.06.013

Type

Journal article

Journal

Dev Biol

Publication Date

01/09/2014

Volume

393

Pages

124 - 136

Keywords

Endochondral bone development, Hypoxia Inducible Factor, Limb bud mesenchyme, Von Hippel–Lindau, Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Hypoxia, Cell Proliferation, Cells, Cultured, Chondrogenesis, Growth Plate, Hypoxia-Inducible Factor 1, alpha Subunit, Limb Buds, Mesenchymal Stem Cells, Mice, Mice, Inbred C57BL, Mice, Transgenic, Osteogenesis, Von Hippel-Lindau Tumor Suppressor Protein