Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Rat and human pancreatic duct cells have small-conductance Cl- channels in their apical plasma membranes. These channels are regulated by secretin and adenosine 3',5'-cyclic monophosphate and may function in parallel with Cl(-)-HCO3- exchangers to allow HCO3- secretion from the duct cell. Using the patch-clamp technique, we have now determined the anion permeability sequence of the channel as NO3- greater than Br- approximately I- approximately Cl- much greater than HCO3- much greater than gluconate. From this we conclude 1) that anion permeation involves a weak interaction with charged sites inside the channel pore, 2) that because of the low HCO3-/Cl- permeability ratio it is unlikely that significant amounts of HCO3- could be secreted directly via the channel, and 3) that channel permeability may determine the anion selectivity of secretion. We also show that 5-nitro-2-(3-phenylpropylamino)benzoic acid blocks the small-conductance Cl- channel, whereas 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid has no effect.

Original publication

DOI

10.1152/ajpcell.1990.259.5.C752

Type

Journal article

Journal

Am J Physiol

Publication Date

11/1990

Volume

259

Pages

C752 - C761

Keywords

Animals, Anions, Bicarbonates, Chloride Channels, Copper, Electric Conductivity, Electrophysiology, Humans, Ion Channels, Membrane Potentials, Membrane Proteins, Nitrobenzoates, Pancreatic Ducts, Rats