Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RAS has been shown to increase radiation resistance. Upstream and downstream pathways from RAS could thus be targets for manipulation of radiosensitivity. EGFR expression and AKT phosphorylation are also associated with the response to radiation. A retrospective study evaluating EGFR and AKT in patients treated with multimodality therapy found a significant association between P-AKT and treatment failure. Moreover, these data are strengthened by in vitro studies showing that inhibition of EGFR, RAS, PI3K, and AKT radiosensitized cancer cell lines. We have previously shown that PI3K is a mediator of RAS-induced radiation resistance. We now suggest that EGFR, which is upstream of PI3K, may also mediate resistance through a common pathway. In addition to EGFR and RAS, PTEN can also regulate the PI3K pathway. Identifying a common signal for EGFR, RAS, or PTEN that results in radiation resistance may uncover targets for developing molecular-based radiosensitization protocols for tumors resistant to radiation and thus improve local control.

Original publication

DOI

10.1038/sj.onc.1206699

Type

Journal article

Journal

Oncogene

Publication Date

01/09/2003

Volume

22

Pages

5866 - 5875

Keywords

Animals, Humans, Neoplasms, Signal Transduction, ras Proteins