Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

3-(4-Methylcoumarin-7-yloxy)methylindole-4,7-diones were synthesised as model prodrugs in order to investigate the correlation between rates of reductive elimination from the (indolyl-3-yl)methyl position with reductive metabolism by hypoxic tumor cells and NADPH: cytochrome P450. Rates of elimination of the chromophore/fluorophore (7-hydroxy-4-methylcoumarin) following one-electron reduction of indolequinones to their semiquinone radicals (Q*-) was measured by pulse radiolysis utilising spectrophotometric and fluorometric detection. Incorporation of a thienyl or methyl substituent at the (indol-3-yl)CHR-position (where R=thienyl or methyl adjacent to the phenolic ether linking bond) significantly shortened the half-life of reductive elimination from 87 to 6 and 2 ms, respectively. Elimination from the methyl substituted analogue can thus compete effectively with the reaction of the semiquinone radical with oxygen at levels typically present in tumours (half-life approximately 1.8 ms at 0.5% O2). Chemical kinetic predictions were confirmed by metabolism in breast tumour MCF-7 cells between 0-2.1% O2. Rates of reductive release of the fluorophore from the non-fluorescent parent indolequinones (R=H, Me, thienyl) were similar under anoxia ( approximately 1.7 nmol coumarinmin(-1)mg protein(-1)) reflecting the similarity in one-electron reduction potential. Whereas coumarin release from the indolequinone (R=H) was completely inhibited above 0.5% O2, the enhanced rate of reductive elimination when R=thienyl or Me increased the metabolic rate of release to approximately 0.35 and 0.7 nmol coumarinmin(-1)mg protein(-1), respectively at 0.5% O2; complete inhibition occurring by 2.1% O2. Similar 'oxygen profiles' of release were observed with NADPH: cytochrome P450 reductase. In conclusion, it is possible to modify rates of reductive elimination from indolequinones to control the release of drugs over a range of tumour hypoxia.

Type

Journal article

Journal

Biochem Pharmacol

Publication Date

01/05/2002

Volume

63

Pages

1629 - 1639

Keywords

Coumarins, Drug Delivery Systems, Humans, Hypoxia, NADPH-Ferrihemoprotein Reductase, Oxidation-Reduction, Oxygen, Prodrugs, Tumor Cells, Cultured