Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We report the demonstration of time-correlated single-photon counting (TCSPC) fluorescence lifetime imaging (FLIM) to ex vivo decayed and healthy dentinal tooth structures, using a white-light supercontinuum excitation source. By using a 100 fs-pulsed Ti:Sapphire laser with a low-frequency chirp to pump a 30-cm long section of photonic crystal fibre, a ps-pulsed white-light supercontinuum was created. Optical bandpass interference filters were then applied to this broad-bandwidth source to select the 488-nm excitation wavelength required to perform TCSPC FLIM of dental structures. Decayed dentine showed significantly shorter lifetimes, discriminating it from healthy tissue and hard, stained and thus affected but non-infected material. The white-light generation source provides a flexible method of producing variable-bandwidth visible and ps-pulsed light for TCSPC FLIM. The results from the dental tissue indicate a potential method of discriminating diseased tissue from sound, but stained tissue, which could be of crucial importance in limiting tissue resection during preparation for clinical restorations.

Original publication

DOI

10.1111/j.1365-2818.2007.01724.x

Type

Journal article

Journal

J Microsc

Publication Date

02/2007

Volume

225

Pages

126 - 136

Keywords

Dental Caries, Equipment Design, Humans, Microscopy, Confocal, Microscopy, Fluorescence, Optics and Photonics, Tooth