Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RNA-binding proteins (RBPs) and noncoding (nc)RNAs (such as microRNAs, long ncRNAs, and others) cooperate within a post-transcriptional network to regulate the expression of genes required for many aspects of cancer behavior including its sensitivity to chemotherapy. Here, using an RBP-centric approach, we explore the current knowledge surrounding contributers to post-transcriptional gene regulation (PTGR) in ovarian cancer and identify commonalities that hint at the existence of an evolutionarily conserved core PTGR network. This network regulates survival and chemotherapy resistance in the contemporary context of the cancer cell. There is emerging evidence that cancers become dependent on PTGR factors for their survival. Further understanding of this network may identify innovative therapeutic targets as well as yield crucial insights into the hard-wiring of many malignancies, including ovarian cancer. WIREs RNA 2018, 9:e1432. doi: 10.1002/wrna.1432 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Mechanisms RNA in Disease and Development > RNA in Disease.

Original publication

DOI

10.1002/wrna.1432

Type

Journal article

Journal

Wiley Interdiscip Rev RNA

Publication Date

01/2018

Volume

9

Keywords

Antineoplastic Agents, Drug Resistance, Neoplasm, Female, Gene Expression Regulation, Humans, Ovarian Neoplasms, Protein Biosynthesis, RNA Stability, RNA, Messenger, RNA, Untranslated, RNA-Binding Proteins