Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Insulin-like growth factor-binding protein 1 (IGFBP-1) is important in regulating minute-to-minute IGF bioavailability in the circulation and is primarily an inhibitor of IGF action systemically and in most cellular systems. Understanding regulation of IGFBP-1 is, thus, important in understanding regulation of IGF actions. The IGFBP-1 promoter contains a cAMP response element, and cAMP stimulates IGFBP-1 gene expression at the transcriptional level. Recently, we have found three consensus sequences for the hypoxia response element in intron 1 of the IGFBP-1 gene. Herein, we have investigated the effects of hypoxia and a cAMP analog, 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP), on IGFBP-1 expression in HepG2 cells, a model system for IGFBP-1 gene regulation. HepG2 cells were exposed to normoxia (20% pO2) or hypoxia (2% pO2) for 24 h in the absence or presence of 8-Br-cAMP (0.1, 0.5, and 1 mM). Western ligand blotting revealed IGFBP-1 as the predominant IGFBP in HepG2-conditioned media, which increased in a dose-dependent manner after incubation with 8-Br-cAMP in normoxia and hypoxia (3-fold and 7-fold at 1 mM, respectively). Under hypoxic, compared with normoxic, conditions, IGFBP-1 protein and messenger RNA (mRNA) levels increased ~10-fold and 20-fold, respectively. In normoxia, 8-Br-cAMP stimulated IGFBP-1 protein and mRNA levels in a dose-dependent manner (7-fold and 10-fold at 1 mM). Hypoxia and 8-Br-cAMP showed additive stimulatory effects on IGFBP-1 protein and mRNA levels (35-fold and 50-fold at 1 mM) that were time and dose dependent. Primary transcripts of IGFBP-1 mRNA were increased concordantly with IGFBP-1 mRNA. The half-life of the IGFBP-1 mRNA was markedly increased (~6-fold) by hypoxia, and cAMP minimally enhanced this effect. These results demonstrate that hypoxia and compounds that increase intracellular cAMP additively regulate IGFBP-1 gene expression by transcriptional and posttranscriptional mechanisms. Regulation of IGFBP-1 mRNA and protein by cAMP and hypoxia may be important for understanding the physiologic and pathophysiologic roles of IGFBP-1.

Original publication

DOI

10.1210/jc.85.10.3821

Type

Conference paper

Publication Date

01/01/2000

Volume

85

Pages

3821 - 3827