Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 SPIE. The PENELOPE Monte Carlo simulation code was used alongside the SpekCalc code to simulate X-ray energy spectra from a VJ Technologies' X-ray generator at a range of anode voltages. The PENELOPE code is often utilised in medicine but is here applied to develop coded aperture and pinhole imaging systems for security purposes. The greater computational burden of PENELOPE over SpekCalc is warranted by its greater flexibility and output information. The model was designed using the PENGEOM sub-tool and consists of a tungsten anode and five layers of window materials. The photons generated by a mono-energetic electron beam are collected by a virtual detector placed after the last window layer, and this records the spatial, angular and energy distributions which are then used as the X-ray source for subsequent simulations. The process of storing X-ray outputs and using them as a virtual photon source can then be used efficiently for exploring a range of imaging conditions as the computationally expensive electron interactions in the anode need not be repeated. The modelled spectra were validated with experimentally determined spectra collected with an Amptek X-123 Cadmium Telluride detector placed in front of the source.

Original publication




Conference paper

Publication Date