Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The anti-vascular effects of the tubulin binding agent, disodium combretastatin A-4 3-O-phosphate (CA-4-P), have been investigated in the rat P22 carcinosarcoma by measurements of radiolabelled iodoantipyrine uptake and dynamic contrast-enhanced MRI. The iodoantipyrine estimates of absolute tumour blood flow showed a reduction from 0.35 to 0.04 ml g(-1) min(-1) 6 h after 10 mg kg(-1) CA-4-P and to <0.01 ml g(-1) min(-1) after 100 mg kg(-1). Tumour blood flow recovered to control values 24 h after 10 mg kg(-1) CA-4-P, but there was no recovery by 24 h after the higher dose. Dynamic contrast-enhanced MR images were obtained at 4.7 T, following injection of 0.1 mmol kg(-1) Gd-DTPA and analysed assuming a model arterial input function. A parameter, K(trans), which is related to blood flow rate and permeability of the tumour vasculature to Gd-DTPA, was calculated from the uptake data. K(trans) showed a reduction from 0.34 to 0.11 min(-1) 6 h after 10 mg kg(-1) CA-4-P and to 0.07 min(-1) after 100 mg kg(-1). Although the magnitude of changes in K(trans) was smaller than that in tumour blood flow, the time course and dose-dependency patterns were very similar. The apparent extravascular extracellular volume fraction, nu(e), showed a four-fold reduction 6 h after 100 mg kg(-1) CA-4-P, possibly associated with vascular shutdown within large regions of the tumour. These results suggest that K(trans) values for Gd-DTPA uptake into tumours could be a useful non-invasive indicator of blood flow changes induced by anti-vascular agents such as combretastatin.

Type

Journal article

Journal

NMR Biomed

Publication Date

04/2002

Volume

15

Pages

89 - 98

Keywords

Angiogenesis Inhibitors, Animals, Antineoplastic Agents, Phytogenic, Antipyrine, Bibenzyls, Carcinosarcoma, Contrast Media, Gadolinium DTPA, Iodine Radioisotopes, Magnetic Resonance Imaging, Male, Radionuclide Imaging, Rats, Stilbenes