Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To measure action spectra for the induction of single-strand breaks (SSB) and double-strand breaks (DSB) in plasmid DNA by low-energy photons and provide estimates for the energy dependence of strand-break formation important for track-structure simulations of DNA damage. MATERIALS AND METHODS: Plasmid pMSG-CAT was irradiated as a monolayer, under vacuum, with 7 150eV photons produced by a synchrotron source. Yields of SSB and DSB were determined by the separation of the three plasmid forms by gel electrophoresis. RESULTS: The yields of SSB per incident photon increased from 1.4x 10(-15) SSB per plasmid per photon/cm2 at 7eV to 7.5 x 10(-14) SSB per plasmid per photon/cm2 at 150 eV. Direct induction of DSB was also detected increasing from 3.4 x 10(-17) DSB per plasmid per photon/cm2 at 7eV to 4.1 x 10(-15) DSB per plasmid per photon/cm2 at 150eV. When the absorption cross-section of the DNA was considered, the quantum efficiency for break formation increased over the energy range studied. Over the entire energy range, the ratio of SSB to DSB remained constant. CONCLUSIONS: These studies provide evidence for the ability of photons as low as 7 eV to induce both SSB and DSB. The common action spectrum for both lesions suggests that they derive from the same initial photoproducts under conditions where the DNA is irradiated in vacuum and a predominantly direct effect is being observed. The spectral and dose-effect behaviour indicates that DSB are induced predominantly by single-event processes in the energy range covered.

Type

Journal article

Journal

Int J Radiat Biol

Publication Date

07/2000

Volume

76

Pages

881 - 890

Keywords

DNA, DNA Damage, DNA, Single-Stranded, Photons, Plasmids