Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UNLABELLED: Our goals in this study were to determine whether (111)In-trastuzumab coupled to peptides harboring nuclear localizing sequences (NLSs) could kill trastuzumab-resistant breast cancer cell lines through the emission of Auger electrons and whether the combination of radiosensitization with methotrexate (MTX) would augment the cytotoxicity of this radiopharmaceutical. METHODS: Trastuzumab was derivatized with sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate for reaction with NLS peptides and then conjugated with diethylenetriaminepentaacetic acid for labeling with (111)In. HER2 expression was determined by Western blot and by radioligand binding assay using (111)In-trastuzumab in a panel of breast cancer cell lines, including SK-BR-3, MDA-MB-231 and its HER2-transfected subclone (231-H2N), and 2 trastuzumab-resistant variants (TrR1 and TrR2). Nuclear importation of (111)In-NLS-trastuzumab and (111)In-trastuzumab in breast cancer cells was measured by subcellular fractionation, and the clonogenic survival of these cells was determined after incubation with (111)In-NLS-trastuzumab, (111)In-trastuzumab, or trastuzumab (combined with or without MTX). Survival curves were analyzed according to the dose-response model, and the radiation-enhancement ratio was calculated from the survival curve parameters. RESULTS: The expression of HER2 was highest in SK-BR-3 cells (12.6 x 10(5) receptors/cell), compared with 231-H2N and TrR1 cells (6.1 x 10(5) and 5.1 x 10(5) receptors/cell, respectively), and lowest in MDA-MB-231 and TrR2 cells (0.4 x 10(5) and 0.6 x 10(5) receptors/cell, respectively). NLS peptides increased the nuclear uptake of (111)In-trastuzumab in MDA-MB-231, 231-H2N, TrR1, and TrR2 cells from 0.1%+/-0.01%, 2.5%+/-0.2%, 2.8%+/-0.7%, and 0.5%+/-0.1% to 0.5%+/-0.1%, 4.6%+/-0.1%, 5.2%+/-0.6%, and 1.5%+/-0.2%, respectively. The cytotoxicity of (111)In-NLS-trastuzumab on breast cancer cells was directly correlated with the HER2 expression densities of the cells. On a molar concentration basis, the effective concentration required to kill 50% of 231-H2N and TrR1 cells for (111)In-NLS-trastuzumab was 9- to 12-fold lower than for (111)In-trastuzumab and 16- to 77-fold lower than for trastuzumab. MDA-MB-231 and TrR2 cells were less sensitive to (111)In-NLS-trastuzumab or (111)In-trastuzumab, and both cell lines were completely insensitive to trastuzumab. The radiation-enhancement ratio induced by MTX for 231-H2N and TrR1 cells after exposure to (111)In-NLS-trastuzumab was 1.42 and 1.68, respectively. CONCLUSION: Targeted Auger electron radioimmunotherapy with (111)In-NLS-trastuzumab can overcome resistance to trastuzumab, and MTX can potently enhance the sensitivity of HER2-overexpressing breast cancer cells to the lethal Auger electrons emitted by this radiopharmaceutical.

Original publication

DOI

10.2967/jnumed.108.051771

Type

Journal article

Journal

J Nucl Med

Publication Date

09/2008

Volume

49

Pages

1498 - 1505

Keywords

Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Antineoplastic Agents, Breast Neoplasms, Cell Line, Tumor, Cell Survival, Drug Resistance, Neoplasm, Humans, Indium Radioisotopes, Methotrexate, Nuclear Localization Signals, Radiation-Sensitizing Agents, Radiopharmaceuticals, Trastuzumab