Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Positron emission tomography (PET)/computed tomography (CT) using the radiotracer 18F-Fluoromisonidazole (FMISO) has been widely employed to image tumour hypoxia and is of interest to help develop novel hypoxia modifiers and guide radiation treatment planning. Yet, the optimal post-injection (p.i.) timing of hypoxic imaging remains questionable. Therefore, we investigated the correlation between hypoxia-related quantitative values in FMISO-PET acquired at 2 and 4 h p.i. in patients with non-small cell lung cancer (NSCLC). Patients with resectable NSCLC participated in the ATOM clinical trial (NCT02628080) which investigated the hypoxia modifying effects of atovaquone. Two-hour and four-hour FMISO PET/CT images acquired at baseline and pre-surgery visits (n = 58) were compared. Cohort 1 (n = 14) received atovaquone treatment, while cohort 2 (n = 15) did not. Spearman's rank correlation coefficients (ρ) assessed the relationship between hypoxia-related metrics, including standardised uptake value (SUV), tumour-to-blood ratio (TBR), and tumour hypoxic volume (HV) defined by voxels with TBR ≥ 1.4. As the primary imaging-related trial endpoint used to evaluate the action of atovaquone on tumour hypoxia in patients with NSCLC was change in tumour HV from baseline, this was also assessed in patients (n = 20) with sufficient baseline 2- and 4-h scan HV to reliably measure change (predefined as ≥ 1.5 mL). Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. In tumours overall, strong correlation (P 

Original publication

DOI

10.1038/s41598-022-26199-7

Type

Journal article

Journal

Sci Rep

Publication Date

16/12/2022

Volume

12

Keywords

Humans, Carcinoma, Non-Small-Cell Lung, Positron Emission Tomography Computed Tomography, Atovaquone, Radiopharmaceuticals, Lung Neoplasms, Misonidazole, Positron-Emission Tomography, Hypoxia, Cell Hypoxia