Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Reactive oxygen species (ROS) are a diverse group of molecules that serve as both essential signalling mediators and potential drivers of oxidative stress. In tumours, ROS influence critical processes such as proliferation, angiogenesis, metabolic adaptation and therapy resistance. These processes are further modulated by reduced oxygen availability (hypoxia), a defining feature of many solid tumours that can alter redox balance and cellular signalling. The interplay between ROS and hypoxia is highly dynamic, with both factors shaping tumour behaviour in complex and often unpredictable ways. Accurately measuring ROS and tumour oxygenation remains a significant challenge due to their transient nature and variability in levels across different tumour types. In this guide, we provide a comprehensive update on the dynamic interaction between ROS and hypoxia in tumours, evaluate current strategies for ROS detection and discuss emerging therapeutic approaches that target redox vulnerabilities in cancer. Understanding the intricate relationship between ROS and hypoxia is crucial for refining therapeutic strategies and improving patient outcomes.

Original publication

DOI

10.1002/1878-0261.70151

Type

Journal article

Journal

Mol Oncol

Publication Date

11/2025

Volume

19

Pages

3003 - 3022

Keywords

cancer, hypoxia, reactive oxygen species, tumour microenvironment, Humans, Reactive Oxygen Species, Neoplasms, Tumor Hypoxia, Animals, Oxidation-Reduction, Oxidative Stress, Oxygen, Signal Transduction