Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The outcome for patients with lung cancer has not changed significantly for more than two decades. Several studies show that the overexpression of vascular endothelial growth factor (VEGF)/vascular permeability factor and epidermal growth factor (EGF) and their receptors correlates with the clinical outcome for lung cancer patients. However, clinical trials of agents that target either of these pathways alone have been disappointing. We hypothesize that targeting both the tumor and its vasculature by simultaneously blocking the VEGFR and EGFR pathways will improve the treatment of locoregional lung cancer. Human lung cancer specimens were first examined for the activation of VEGF receptor 2 (VEGFR2) and EGF receptor (EGFR) for tumor and tumor-associated endothelial cells, and both were found to be activated. The effects of ZD6474 (ZACTIMA), a small-molecule inhibitor of VEGFR2 and EGFR tyrosine kinases, were then studied in vitro using human lung cancer and microvascular endothelial cells. In vitro, ZD6474 inhibited EGFR, VEGFR2, mitogen-activated protein kinase and Akt phosphorylation, EGF- and VEGF-induced proliferation, and endothelial cell tube formation and also induced apoptosis. ZD6474 was further studied in vivo using an orthotopic mouse model of non-small cell lung cancer using NCI-H441 human lung adenocarcinoma cells. The inhibition of both VEGFR2 and EGFR signaling pathways by ZD6474 resulted in profound antiangiogenic, antivascular, and antitumor effects. These results provide a basis for the development of clinical strategies for the combination of selective protein tyrosine kinase inhibitors that block both EGFR and VEGFR signaling as part of the management of locally advanced lung cancer.

Original publication

DOI

10.1158/1535-7163.MCT-06-0416

Type

Journal article

Journal

Mol Cancer Ther

Publication Date

02/2007

Volume

6

Pages

471 - 483

Keywords

Adenocarcinoma, Angiogenesis Inhibitors, Animals, Apoptosis, Blotting, Western, Carcinoma, Squamous Cell, Cell Line, Tumor, Cell Proliferation, Endothelium, Vascular, ErbB Receptors, Flow Cytometry, Humans, Lung Neoplasms, Male, Mice, Mice, Inbred BALB C, Mice, Inbred CBA, Neovascularization, Pathologic, Phosphorylation, Piperidines, Proto-Oncogene Proteins c-akt, Quinazolines, Signal Transduction, Vascular Endothelial Growth Factor Receptor-2, Xenograft Model Antitumor Assays