Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The clinical success of small-molecule vascular disrupting agents (VDAs) depends on their combination with conventional therapies. Scheduling and sequencing remain key issues in the design of VDA-chemotherapy combination treatments. This study examined the antitumour activity of ZD6126, a microtubule destabilising VDA, in combination with paclitaxel (PTX), a microtubule-stabilising cytotoxic drug, and the influence of schedule and sequence on the efficacy of the combination. Nude mice bearing MDA-MB-435 xenografts received weekly cycles of ZD6126 (200 mg kg(-1) i.p.) administered at different times before or after PTX (10, 20, and 40 mg kg(-1) i.v.). ZD6126 given 2 or 24 h after PTX showed no significant benefit, a result that was attributed to a protective effect of PTX against ZD6126-induced vascular damage and tumour necrosis, a hallmark of VDA activity. Paclitaxel counteracting activity was reduced by distancing drug administrations, and ZD6126 given 72 h after PTX potentiated the VDA's antitumour activity. Schedules with ZD6126 given before PTX improved therapeutic activity, which was paralleled by a VDA-induced increase in cell proliferation in the viable tumour tissue. Paclitaxel given 72 h after ZD6126 yielded the best response (50% tumours regressing). A single treatment with ZD6126 followed by weekly administration of PTX was sufficient to achieve a similar response (57% remissions). These findings show that schedule, sequence and timing are crucial in determining the antitumour efficacy of PTX in combination with ZD6126. Induction of tumour necrosis and increased proliferation in the remaining viable tumour tissue could be exploited as readouts to optimise schedules and maximise therapeutic efficacy.

Original publication

DOI

10.1038/sj.bjc.6603969

Type

Journal article

Journal

Br J Cancer

Publication Date

08/10/2007

Volume

97

Pages

888 - 894

Keywords

Angiogenesis Inhibitors, Animals, Antineoplastic Agents, Phytogenic, Breast Neoplasms, Cell Line, Tumor, Cell Proliferation, Drug Synergism, Drug Therapy, Combination, Female, Humans, Mice, Mice, Nude, Mitosis, Necrosis, Neovascularization, Pathologic, Organophosphorus Compounds, Paclitaxel, Survival Rate, Treatment Outcome, Xenograft Model Antitumor Assays