Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The recently described combined carbogen USPIO (CUSPIO) magnetic resonance imaging (MRI) method uses spatial correlations in independent imaging biomarkers to assess specific components of tumor vascular structure and function. Our study aimed to evaluate CUSPIO biomarkers for the assessment of tumor response to antiangiogenic therapy. CUSPIO imaging was performed in subcutaneous rat C6 gliomas before and 2 days after treatment with the potent VEGF-signaling inhibitor cediranib (n = 12), or vehicle (n = 12). Histological validation of Hoechst 33342 uptake (perfusion), smooth muscle actin staining (maturation), pimonidazole adduct formation (hypoxia) and necrosis were sought. Following treatment, there was a significant decrease in fractional blood volume (-43%, p < 0.01) and a significant increase in hemodynamic vascular functionality (treatment altered ΔR(2) *(carbogen) from 1.2 to -0.2 s(-1) , p < 0.05). CUSPIO imaging revealed an overall significant decrease in plasma perfusion (-27%, p < 0.05) following cediranib treatment, that was associated with selective effects on immature blood vessels. The CUSPIO responses were associated with a significant 15% reduction in Hoechst 33342 uptake (p < 0.05), but no significant difference in vascular maturation or necrosis. Additionally, treatment with cediranib resulted in a significant 40% increase in tumor hypoxia (p < 0.05). The CUSPIO imaging method provides novel and more specific biomarkers of tumor vessel maturity and vascular hemodynamics, and their response to VEGF-signaling inhibition, compared to current MR imaging biomarkers utilized in the clinic. Such biomarkers may prove effective in longitudinally monitoring tumor vascular remodeling and/or evasive resistance in response to antiangiogenic therapy.

Original publication




Journal article


Int J Cancer

Publication Date





1854 - 1862


Angiogenesis Inhibitors, Animals, Benzimidazoles, Biomarkers, Tumor, Contrast Media, Dextrans, Fluorescent Dyes, Glioma, Magnetic Resonance Imaging, Magnetite Nanoparticles, Male, Nitroimidazoles, Quinazolines, Radiation-Sensitizing Agents, Rats, Rats, Nude, Tumor Cells, Cultured