Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

This article presents a method to reconstruct liver MRI data acquired continuously during free breathing, without any external sensor or navigator measurements. When the deformations associated with k-space data are known, generalized matrix inversion reconstruction has been shown to be effective in reducing the ghosting and blurring artifacts of motion. This article describes a novel method to obtain these nonrigid deformations. A breathing model is built from a fast dynamic series: low spatial resolution images are registered and their deformations parameterized by overall superior-inferior displacement. The correct deformation for each subset of the subsequent imaging data is then found by comparing a few lines of k-space with the equivalent lines from a deformed reference image while varying the deformation over the model parameter. This procedure is known as image deformation recovery using overlapping partial samples (iDROPS). Simulations using 10 rapid dynamic studies from volunteers showed the average error in iDROPS-derived deformations within the liver to be 1.43 mm. A further four volunteers were imaged at higher spatial resolution. The complete reconstruction process using data from throughout several breathing cycles was shown to reduce blurring and ghosting in the liver. Retrospective respiratory gating was also demonstrated using the iDROPS parameterization.

Original publication

DOI

10.1002/mrm.22017

Type

Journal article

Journal

Magn Reson Med

Publication Date

08/2009

Volume

62

Pages

440 - 449

Keywords

Abdomen, Algorithms, Artifacts, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Liver, Magnetic Resonance Imaging, Movement, Pattern Recognition, Automated, Reproducibility of Results, Respiratory Mechanics, Sensitivity and Specificity, Subtraction Technique