Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Combinations of tyrosine kinase inhibitors (TKI) with gemcitabine have been attempted with little added benefit to patients. We hypothesized that TKIs designed to bind to ATP-binding pockets of growth factor receptors also bind to transporter proteins that recognize nucleosides. EXPERIMENTAL DESIGN: TKI inhibition of uridine transport was studied with recombinant human (h) equilibrative (E) and concentrative (C) nucleoside transporters (hENT, hCNT) produced individually in yeast. TKIs effects on uridine transport, gemcitabine accumulation, regulation of hENT1 activity, and cell viability in the presence or absence of gemcitabine were evaluated in human pancreatic and lung cancer cell lines. RESULTS: Erlotinib, gefitinib and vandetanib inhibited [(3)H]uridine transport in yeast and [(3)H]uridine and [(3)H]gemcitabine uptake in the four cell lines. Treatment of cell lines with erlotinib, gefitinib, or vandetanib for 24 hours reduced hENT1 activity which was reversed by subsequent incubation in drug-free media for 24 hours. Greater cytotoxicity was observed when gemcitabine was administered before erlotinib, gefitinib, or vandetanib than when administered together and synergy, evaluated using the CalcuSyn Software, was observed in three cell lines resulting in combination indices under 0.6 at 50% reduction of cell growth. CONCLUSIONS: Vandetanib inhibited hENT1, hENT2, hCNT1, hCNT2, and hCNT3, whereas erlotinib inhibited hENT1 and hCNT3 and gefitinib inhibited hENT1 and hCNT1. The potential for reduced accumulation of nucleoside chemotherapy drugs in tumor tissues due to inhibition of hENTs and/or hCNTs by TKIs indicates that pharmacokinetic properties of these agents must be considered when scheduling TKIs and nucleoside chemotherapy in combination.

Original publication




Journal article


Clin Cancer Res

Publication Date





176 - 186


Antimetabolites, Antineoplastic, Biological Transport, Cell Line, Tumor, Cell Survival, Deoxycytidine, Drug Screening Assays, Antitumor, Drug Synergism, Erlotinib Hydrochloride, Gefitinib, Humans, Inhibitory Concentration 50, Nucleoside Transport Proteins, Piperidines, Quinazolines, Saccharomyces cerevisiae, Uridine