Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The early detection of breast cancer greatly improves prognosis. One of the earliest signs of cancer is the formation of clusters of microcalcifications. We introduce a novel method for microcalcification detection based on a biologically inspired adaptive model of contrast detection. This model is used in conjunction with image filtering based on anisotropic diffusion and curvilinear structure removal using local energy and phase congruency. An important practical issue in automatic detection methods is the selection of parameters: we show that the parameter values for our algorithm can be estimated automatically from the image. This way, the method is made robust and essentially free of parameter tuning. We report results on mammograms from two databases and show that the detection performance can be improved by first including a normalisation scheme.

Original publication

DOI

10.1016/j.media.2006.07.004

Type

Journal article

Journal

Med Image Anal

Publication Date

12/2006

Volume

10

Pages

850 - 862

Keywords

Algorithms, Breast Neoplasms, Calcinosis, Female, Humans, Image Interpretation, Computer-Assisted, Mammography, ROC Curve