Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although anti-VEGF therapy is widely used in high-grade gliomas, no predictor of response or toxicity has been reported yet. We investigated here the association of the functional single nucleotide polymorphism (SNP) rs2010963, located in the 5' untranslated terminal region of the VEGFA gene, with survival, response to bevacizumab (BVZ) and vascular toxicity. The rs2010963 was genotyped by Taqman assay in blood DNA from 954 glioma patients with available survival data, including 225 glioblastoma (GBM) patients treated with BVZ. VEGFA plasma levels were assessed by ELISA in 87 patients before treatment. Thrombo-hemorragic adverse events were recorded during BVZ treatment or not, and in an independent population of 92 GBM patients treated with temozolomide. The CC genotype was associated with the occurrence of thrombo-hemorragic events (CC 25 versus CG 13.5 and GG 5.2 %; P = 0.0044) during BVZ. A similar but weaker and non significant trend was observed in patients not receiving BVZ. A CC genotype was associated with higher levels of plasma VEGFA at baseline (107.6 versus 57.50 pg/mL in heterozygotes (CG) and 52.75 pg/mL in GG patients, P = 0.035 and P = 0.028 respectively). The CC genotype tended to be associated to longer PFS when treated with BVZ (P = 0.05), but not when treated with the temozolomide treatment. Our data suggest that the rs2010963 genotype is associated with longer PFS, higher risk of vascular events in recurrent GBM especially treated with BVZ, and higher plasma VEGFA concentration. It may help to identify patients at risk of vascular adverse events during BVZ treatment.

Original publication

DOI

10.1007/s11060-014-1677-x

Type

Journal article

Journal

J Neurooncol

Publication Date

02/2015

Volume

121

Pages

499 - 504

Keywords

Angiogenesis Inhibitors, Antibodies, Monoclonal, Humanized, Bevacizumab, Brain Neoplasms, Disease-Free Survival, Enzyme-Linked Immunosorbent Assay, Genotype, Glioblastoma, Hemorrhage, Humans, Kaplan-Meier Estimate, Neoplasm Recurrence, Local, Polymorphism, Single Nucleotide, Thrombosis, Vascular Endothelial Growth Factor A