Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

P-cadherin is normally expressed in the basal layer of squamous epithelia and absent from the healthy intestine and colon. We have previously shown it to be expressed in all inflamed, hyperplastic, and dysplastic intestinal and colonic mucosa. This study aimed to better understand the mechanisms controlling the expression of P-cadherin and the biological effects of its ectopic presence in the intestine and colon. We investigated the CpG methylation status of the P-cadherin (CDH3) promoter and P-cadherin mRNA and protein expression in cases of familial and sporadic colorectal cancer (CRC). The CDH3 promoter was hypomethylated in colonic aberrant crypt foci, in CRC, and, occasionally, in the normal epithelium adjacent to cancer, demonstrating a potential "field effect" of cancerization. The hypomethylation was also associated with induction of P-cadherin expression in the neoplastic colon (P < 0.0001). We then created transgenic mice that overexpressed P-cadherin specifically in the intestinal and colonic epithelium under the liver fatty acid binding protein promoter. Forced ectopic expression of P-cadherin accompanied by indomethacin-induced inflammation resulted in a 3-fold higher crypt fission rate within the small and large intestines in the homozygous mice compared with the wild-type animals (P < 0.02). We conclude that epigenetic demethylation of the P-cadherin promoter in the human intestine permits its ectopic expression very early in the colorectal adenoma-carcinoma sequence and persists during invasive cancer. Induced P-cadherin expression, especially in mucosal damage, leads to an increased rate of crypt fission, a common feature of clonal expansion in gastrointestinal dysplasia.

Original publication

DOI

10.1158/0008-5472.CAN-08-0020

Type

Journal article

Journal

Cancer Res

Publication Date

01/10/2008

Volume

68

Pages

7760 - 7768

Keywords

Adenoma, Animals, Cadherins, Cell Division, Cell Proliferation, Colorectal Neoplasms, DNA Methylation, Gastrointestinal Neoplasms, Gene Expression Regulation, Neoplastic, Humans, Intestinal Mucosa, Mice, Mice, Inbred C57BL, Mice, Inbred CBA, Mice, Transgenic, Precancerous Conditions, Promoter Regions, Genetic, Time Factors