Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Purpose: Unmutated (UM) immunoglobulin heavy chain variable region (IgHV) status or IgHV3-21 gene usage is associated with poor prognosis in chronic lymphocytic leukemia (CLL) patients. Interestingly, IgHV3-21 is often co-expressed with light chain IgLV3-21, which is potentially able to trigger cell-autonomous BCR-mediated signaling. However, this light chain has never been characterized independently of the heavy chain IgHV3-21.Experimental Design: We performed total RNA sequencing in 32 patients and investigated IgLV3-21 prognostic impact in terms of treatment-free survival (TFS) and overall survival (OS) in 3 other independent cohorts for a total of 813 patients. IgLV3-21 presence was tested by real-time PCR and confirmed by Sanger sequencing.Results: Using total RNA sequencing to characterize 32 patients with high-risk CLL, we found a high frequency (28%) of IgLV3-21 rearrangements. Gene set enrichment analysis revealed that these patients express higher levels of genes responsible for ribosome biogenesis and translation initiation (P < 0.0001) as well as MYC target genes (P = 0.0003). Patients with IgLV3-21 rearrangements displayed a significantly shorter TFS and OS (P < 0.05), particularly those with IgHV mutation. In each of the three independent validation cohorts, we showed that IgLV3-21 rearrangements-similar to UM IgHV status-conferred poor prognosis compared with mutated IgHV (P < 0.0001). Importantly, we confirmed by multivariate analysis that this was independent of IgHV mutational status or subset #2 stereotyped receptor (P < 0.0001).Conclusions: We have demonstrated for the first time that a light chain can affect CLL prognosis and that IgLV3-21 light chain usage defines a new subgroup of CLL patients with poor prognosis. Clin Cancer Res; 24(20); 5048-57. ©2018 AACR.

Original publication

DOI

10.1158/1078-0432.CCR-18-0133

Type

Journal article

Journal

Clin Cancer Res

Publication Date

15/10/2018

Volume

24

Pages

5048 - 5057

Keywords

Biomarkers, Tumor, Chromosome Aberrations, Clinical Trials as Topic, Computational Biology, Female, Gene Expression Profiling, Gene Expression Regulation, Leukemic, Gene Ontology, Humans, Immunoglobulin Light Chains, Immunoglobulin Variable Region, Leukemia, Lymphocytic, Chronic, B-Cell, Male, Mutation, Peptides, Prognosis, Sequence Analysis, DNA, Transcriptome