Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bart Cornelissen

Molecular imaging using the nuclear medicine imaging techniques of single photon emission computed tomography (SPECT) and positron emission tomography (PET) allows the visualisation and quantification of biological processes in tumour tissue in living organisms. The main advantage of these non-invasive techniques is that they can be performed repeatedly in the same subject, and that the same imaging methods are used in the clinic, which makes them easier to translate from the laboratory to patients in the clinic. Because of their exceptional selectivity and sensitivity, we are mostly interested in the use of antibodies, proteins and peptides, labelled with radionuclides, to target very specific aspects of tumour biology.

Usually, molecular imaging targets are extracellular epitopes: cytokines, growth factors, or extracellular receptors. However, there is a mismatch between molecular imaging methods, which mostly target proteins or receptors on the outside of cancer cells, and cancer biology, where mostly intracellular events are studied. Therefore, one aim of the group is to develop novel methods to enable imaging of intracellular proteins, such as those involved in DNA damage repair signalling.

Furthermore, increased awareness and the rolling out of screening programmes have had a significant impact on cancer survival, especially breast cancer. The earlier a cancer is detected, the better the chances for survival are. Another aim of the group is therefore to develop methods that would allow early detection of tumour tissue.

We are evaluating the novel imaging agent developed in the group in models of breast and pancreatic cancer.

Work in the Radiopharmaceuticals and Molecular Imaging Group is funded by Cancer Research UKEPSRCPancreatic Cancer Research Fund and Pancreatic Cancer UK.