This handbook applies to students starting the course in Michaelmas term 2016. The information in this handbook may be different for students starting in other years.

Version 1.0

The Examination Regulations relating to this course are available at [Examination Regulations](#). If there is a conflict between information in this handbook and the Examination Regulations then you should follow the Examination Regulations. If you have any concerns please contact Katy Higgins at the Department of Oncology: katy.higgins@oncology.ox.ac.uk.

The information in this handbook is accurate as at 1st October 2016, however it may be necessary for changes to be made in certain circumstances, as explained at www.graduate.ox.ac.uk/coursechanges. If such changes are made the department will publish a new version of this handbook together with a list of the changes and students will be informed.
List of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome/Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Useful links:</td>
<td>4</td>
</tr>
<tr>
<td>Key dates:</td>
<td>5</td>
</tr>
<tr>
<td>Locations</td>
<td>6</td>
</tr>
<tr>
<td>The course content and structure</td>
<td>7</td>
</tr>
<tr>
<td>Overview</td>
<td>7</td>
</tr>
<tr>
<td>Course aims</td>
<td>7</td>
</tr>
<tr>
<td>Course structure/description</td>
<td>7</td>
</tr>
<tr>
<td>Syllabus</td>
<td>8</td>
</tr>
<tr>
<td>Teaching and learning</td>
<td>9</td>
</tr>
<tr>
<td>Organisation of teaching and learning</td>
<td>9</td>
</tr>
<tr>
<td>Practicals</td>
<td>10</td>
</tr>
<tr>
<td>Fieldwork</td>
<td>10</td>
</tr>
<tr>
<td>Projects/dissertation</td>
<td>10</td>
</tr>
<tr>
<td>Expectations of study</td>
<td>11</td>
</tr>
<tr>
<td>Assessment</td>
<td>12</td>
</tr>
<tr>
<td>Assessment structure</td>
<td>12</td>
</tr>
<tr>
<td>Feedback on learning and assessment</td>
<td>13</td>
</tr>
<tr>
<td>Examination conventions</td>
<td>13</td>
</tr>
<tr>
<td>Good academic practice and avoiding plagiarism</td>
<td>13</td>
</tr>
<tr>
<td>Entering for University examinations</td>
<td>14</td>
</tr>
<tr>
<td>Examination dates</td>
<td>14</td>
</tr>
<tr>
<td>Sitting your examination</td>
<td>14</td>
</tr>
<tr>
<td>External examiner and Examiners’ reports</td>
<td>14</td>
</tr>
<tr>
<td>Prizes</td>
<td>14</td>
</tr>
<tr>
<td>Skills and learning development</td>
<td>15</td>
</tr>
<tr>
<td>Academic progress</td>
<td>15</td>
</tr>
<tr>
<td>Learning development and skills</td>
<td>15</td>
</tr>
<tr>
<td>Induction</td>
<td>16</td>
</tr>
<tr>
<td>Opportunities for skills training and development</td>
<td>16</td>
</tr>
<tr>
<td>Opportunities to engage in the department research community</td>
<td>16</td>
</tr>
<tr>
<td>Careers information and advice</td>
<td>16</td>
</tr>
<tr>
<td>Student representation, evaluation and feedback</td>
<td>17</td>
</tr>
</tbody>
</table>
Department representation ... 17
Division and University representation .. 17
Opportunities to provide evaluation and feedback .. 17
Student life and support .. 18
Who to contact for help .. 18
Complaints and academic appeals within the Department of Oncology 18
 Complaints .. 18
 Academic appeals ... 19
Student societies ... 19
Policies and regulations ... 19
Facilities .. 20
Social spaces and facilities ... 20
Workspace ... 20
Libraries/museums .. 20
IT .. 20
Experimental facilities/laboratories .. 20
Welcome/Introduction

We would like to offer you all a warm welcome to the MSc in Radiation Biology and the Department of Oncology. Our MSc in Radiation Biology is now an established course as it enters its eighth year, attracting students from around the globe. The course is a one-year, full-time, taught course in Radiation Biology leading to an MSc awarded by the University of Oxford, equipping our students with the scientific knowledge and cutting edge technical skills to become the scholars, teachers and researchers for the next generation both in the UK and globally. For instance, the MSc may form the first year of training of students expected to continue onto a DPhil degree in Radiation Biology or Oncology from the University of Oxford. It can also provide an MSc degree for individuals who wish to continue in academic research in Radiation Biology at other Universities, or to start a career in other professions that require knowledge of Radiation Biology. Many of our former students have continued academic studies towards a PhD/DPhil, applied to study medicine or returned to finalise their clinical training or have become academic professionals associated with Radiation Protection issues.

The MSc in Radiation Biology comprises of a five-month core taught course based on lectures covering the emerging areas of fundamental physics and biology for oncology, with implications for the treatment of cancer by radiotherapy and applications to radiation protection. This is followed by a six-month high-quality basic or clinically-relevant research project. In addition to the lectures, the course will comprise demonstration and practical sessions, sessions on critical review of scientific papers and opportunities to develop oral presentation skills.

The taught content of the course is reviewed and updated annually to include new information. Students who qualify for the M.Sc. degree will have obtained a high level of knowledge of Radiation Biology principles, information, and practical techniques.

The purpose of the handbook is to fully inform you of the key information required for both successful study on the MSc in Radiation Biology but also to outline the provision of facilities and supervision within the Department, and other guidance available in the wider University.

Mark Hill and Bleddyn Jones
MSc Course Director Deputy Course Director

Useful links:
Department website
Web learn
Examination Regulations
Examination Conventions
Oxford Students website
MSD Student Handbook

College Handbooks are available on College websites
Useful department contacts can be found on the Departments intranet site

Student representatives

Departmental disability contact(s)

IT Services

Libraries

Key dates:
MSc Radiation Biology Induction: 4th October 2016

Term dates

Key assessment dates are specified in the examination regulations other dates will be outlined on the MSc Radiation Biology WebLearn site.
Locations
We teach in the Old Road Campus Research Building on Old Road Campus, 12 below:

And in the Robb Smith Education Centre in Dermatology on the Churchill Hospital Campus:
The course content and structure

Overview
This handbook covers the 12 month Master of Science in Radiation Biology. Level 7 FHEQ

Course aims
Students will develop a broad and in-depth understanding of the course syllabus (radiation biology, and its applications in clinical radiotherapy and radiation protection) and be able to relate current developments in radiobiology to the future treatment of cancers.

Students will also become well versed in the ethical and legal issues associated with the use of radioactivity. Students will develop the capacity for critical assessment of published material via journal clubs and problem-based learning (PBL) sessions. Team-building and leadership skills will be accrued via participation in the PBL sessions.

Laboratory methods and practical skills, including experimental design and analysis, statistics, and both oral and written presentation skills will be developed by studying the course modules and by undertaking a laboratory research project. Students will be required to search literature and present reasoned arguments in both written form (essays and extended essays) and verbal form (oral presentations in PBL sessions or other group teaching sessions).

In the extended third term, students will have the opportunity to implement their new skills by undertaking a laboratory research project which will be assessed in a variety of ways (dissertation, oral presentation and short viva voce) resulting in further enhancement of the student's communication skills (written and oral).

Course structure/description
The M.Sc. in Radiation Biology will run for one academic year and is composed of two segments. Starting in week 0 of Michaelmas term, the first segment (five months) forms the 'core' theoretical and practical component of the course. The second segment (six months) provides the students with an opportunity to undertake a research project in a University research group. Both segments are compulsory.

The modules for study will be:

1. Physics and Chemistry of Radiation Action
2. Molecular Radiation Biology
3. Cellular and Tissue Radiation Biology
4. Whole Body Exposure and Carcinogenesis
5. Radiation Epidemiology
6. Radiation Protection
7. Imaging Technologies
8. Tumour Microenvironment
9. Principles of Clinical Radiation Biology
10. Applications of Radiation Therapy
11. Translational Radiation Biology

Areas to be covered in each term are as follows:
Michaelmas term 1: Material delivered as six Modules (Modules 1 - 6) running from the beginning of October (week 0) to early December (week 8). Students will sit a qualifying examination in week 9 based upon Modules 1 - 6. This examination will normally be in the form of a multiple choice questions (MCQ). Students must pass this examination to proceed with the course. One re-sit only will be offered in the second term (week 0 of Hilary Term).

Hilary term 1: Material delivered as six modules (Modules 7 - 12) running from early January (week 0) to late February (week 5). Students will submit an assignment in week 6. Only one re-submission will be offered (week 8 of Trinity Term).

Students will sit a second examination in week 9 of Hilary term based upon Modules 1 - 12. This examination will be in the form of short questions and essay questions. One re-sit only will be offered in the third term (week 0 of Trinity Term).

Hilary term and Trinity term: Laboratory research project in radiation biology or a related area. Runs from early-March (week 6) to August. A research dissertation of no more than 10,000 words must be submitted by the given date in August. The students will present their preliminary findings in an oral presentation towards the end of June. Approximately two weeks after the dissertation hand-in date, students will also face a short viva voce with the Board of Examiners. One re-sit only will be offered at the time the dissertations are examined during the following academic year.

Syllabus
Detailed syllabus information (teaching staff, dates and times of lecturers, demonstrations, synopses, and reading lists) is provided in the course WebLearn site.
Teaching and learning

Organisation of teaching and learning
Fundamental radiation biological science and laboratory methods/practical skills are taught in the first term (Michaelmas) and the first half of Hilary term, over a series of 12 modules. Each module is delivered over a period of one or two weeks and together the 12 modules comprise the 'core content' of the course. The course is overseen by the Course Director and Deputy Director, who provide general advice throughout the entirety of the course. Lectures will be given by Departmental scientists and clinicians and a range of national and international experts, with demonstration sessions given by local staff, to give students a wide knowledge and understanding of radiation biology. Demonstration and practical sessions will enable students to learn particular techniques that are used in this speciality subject area.

The remaining half of Hilary term, the whole of Trinity term and until August a period of approximately 6 months is allowed for a high quality laboratory research project. This 6-month practical project will give the student some experience of laboratory research, and the way the results are written in a scientific fashion. Each student will be supervised by a senior member of staff in their laboratory during this project.

Disabled students are encouraged to highlight any concerns about specific modules or the methods employed for teaching and learning, as reasonable adjustments can be made if necessary.

The MSc in Radiation Biology class size is between 10-15. Teaching is a combination of the following methods. The lecture timetable is available on WebLearn.

Lectures: Formal one hour lectures will be delivered by senior staff of the Oxford Institute for Radiation Oncology and guest lecturers within dedicated Institute teaching space. Each Module is comprised of 6 - 12 lectures, and each module will take one week or more to complete. Lectures are designed to introduce concepts and related background material and to highlight recent developments and current issues. Lecturers are experts in their fields from within the University of Oxford and other institutions.

The policy on the recording of lectures and other formal teaching sessions (EdC Circ 11) is found at the link below:

http://www.admin.ox.ac.uk/media/global/wwwadminoxacuk/localsites/educationcommittee/documents/policyguidance/Policy_on_the_recording_of_lectures_and_other_formal_teaching_sessions_by_students.pdf

Laboratory demonstrations/practical sessions: Formal laboratory study will be available in the laboratories of Institute staff, to give students the opportunity to experience the use of a wide variety of scientific techniques/apparatus. These sessions are designed to provide students with important laboratory and research skills relevant to course theory and run along the modules.

Self-Directed Learning (SDL) sessions/Journal Clubs: During a module, students to be given a collective topic to research individually in their own time without facilitation.

Tutorials: Tutorials will be available on an individual basis should certain students require additional assistance in understanding central concepts or to fill in details for students with varying scientific
backgrounds. Tutorials will be the main sources of remedial teaching to aid students to prepare for re-sit examinations.

Laboratory Research Project: During the second half of Hilary term and during Trinity term and the Long Vacation, students will be seconded to a research group working in a radiation biology area to undertake a research project. Secondments will normally be arranged with Institute researchers although some projects may be offered in other departments within the Division, Oxford Brookes University, or Public Health England (PHE) at Harwell. Students will be supervised by a senior member of the research group concerned (at least senior post-doctoral level) and will gain valuable experience in a host of research skills such as: experimental design and execution, statistics, data analysis and scientific writing/presentation.

If you have any issues with teaching or supervision please raise these as soon as possible so that they can be addressed promptly. Details of who to contact are provided in the complaints and appeals section below.

Practicals
Practical sessions are timetabled into the modules and are to demonstrate specific principals of radiation physics, radiation biology, cancer biology and the treatment of cancer. Students work in small groups to undertake experimental set-ups and data collection and analysis. All aspects of health and safety in the laboratory will be explained before the practical work, and is overseen by the Department’s Health and Safety manager.

Fieldwork
A number of short or day long visits to clinics and our collaborators at the PHE are arranged. These provide additional material that complements the lecture material. These visits are not compulsory but attendance is highly recommended as aspects of the material covered may be subject to examination. The visits are provided at no cost to the students. All aspects of health and safety in the laboratory will be explained before the visits, and is overseen by the Department’s Health and Safety manager or his equivalent with the Oxford University Hospital Trust or PHE.

Projects/dissertation
Available projects are circulated to the students not later than the end of Michaelmas Term. The students are encouraged to discuss these projects with the project supervisors prior to making ranked choices by the end of week 1 Hilary Term, and project allocations will be distributed by the end of week 4 Hilary Term. Projects can commence after the written exam normally in week 9.

Each student will be assigned to an Institute Supervisor throughout the duration of the MSc laboratory research project. The Supervisor will be a senior member of the Oxford Institute for Radiation Oncology, active in either research, teaching or clinical sectors or a close collaborator in a recognised laboratory of the University or the PHE. All Supervisors will be of at least senior post-doctoral level. The Supervisor will meet with his/her assigned student throughout the project and will be responsible for general guidance, pastoral care, academic support, examination preparation and careers advice. The Supervisor will be available to discuss contentious points and comment on the first draft of project dissertation and other written work. The supervisor will also provide general feedback on the progress of the project and the performance of the student to the examination board.

Guidance on the writing of dissertations is provided in the Examination Conventions.
Expectations of study

The course is full time and students are expected to spend considerable time undertaking self-study to complement the lecture material. Students are responsible for their own academic progress, after the Qualifying Exam in Michaelmas Term. There is a vacation over the Christmas period. Following the Written Exam at the end of Hilary Term the work pattern during the dissertation project time is determined by the requirements of the research and must be in agreement with the project Supervisor. It is normal to expect full time but flexible hours, some experimental work may require late or weekend working. This is a guide only and that this will vary between different students.

For the graduate handbook on Paid work guidelines:
(www.admin.ox.ac.uk/edc/policiesandguidance/policyonpaidwork)
Assessment

Assessment structure

Students will be assessed by various methods during the course that will allow both formative and summative assessment of student progress (Examination regulations).

Summative Assessment Methods: The first summative assessment will be towards the end of Michaelmas term in the form of a multiple choice question (MCQ) examination based upon material presented in Modules 1 - 6. Students will need to pass this qualifying examination to be allowed to proceed with the course. One re-sit will be offered in week 0 of Hilary term following appropriate remedial teaching. Students failing the re-sit will not be allowed to continue with the course. The qualifying exam will be assessed according to a mark scheme formulated by course lecturers and approved by the Board of Examiners; this exam does not contribute to the final mark.

During Hilary term students will be required to prepare a 3,000 word assignment. It should be a well-researched scholarly presentation on the subject area covered by the assignment title to which it relates. The assignment titles will be given to the students during Michaelmas term and the final piece of work should be uploading to the Assignments Section of the MSc in Radiation Biology Weblearn site by the end of week 6 of Hilary term for formal assessment. This work will be graded according to a mark scheme formulated by Board of Examiner and approved at the annual meeting of the Organising Committee/Advisory Board. This will count towards the final evaluation representing 15% of the final course mark. The aim of the assignment is to provide students with an opportunity to develop their knowledge and understanding of key course material, use the skills developed in the essays written in Michaelmas term and the analysis skills developed in the statistics teaching throughout the course. Only one resubmission-sit will be offered in week 8 of Trinity Term. Students failing the re-sit will not be allowed to continue with the course.

At the end of Hilary term (week 9) students will be required to sit a 3 hour written examination paper. This paper will be essay based and will cover all 12 modules. This work will be graded according to a mark scheme formulated by the Board of Examiners and approved at the annual meeting of the Organising Committee/Advisory Board and will count towards the final evaluation for award of an MSc in Radiation Biology, representing 25% of the final course mark. One re-sit only will be offered in week 0 of Trinity term following appropriate remedial teaching. Students failing the re-sit will not be allowed to continue with the course.

Students will also undertake an original laboratory research project in the second half of the year (six months, beginning of March - August) in Institute laboratories, or the laboratories of collaborating departments, which will be subsequently submitted to the Examination Schools as a written dissertation (10,000 words maximum) by a given date in August. A purely library based project will not be acceptable. Students will present their work to Institute members (with the examiners excluded) in the form of an oral/slide presentation followed by discussion towards the end of June/beginning of July. Students will be given a short *viva voce* by the Board of Examiners comprised of internal examiners and the external examiner in mid-September. Examiners will grade the dissertation/presentation/*viva voce* as a whole, against previously determined criteria and this will count towards the final evaluation for award, representing 60% of the final course mark. One re-sit only will be offered at the time the dissertations are examined during the following academic year and students must pass this part of the course.
The various summative assessments undertaken during the course will permit a full and detailed assessment of each student's ability, knowledge and understanding of course content and thus their performance over the course duration.

Feedback on learning and assessment

Formative Assessment methods & feedback: Several methods of formative assessment will be utilized during the Michaelmas term and the first half of Hilary term. Students will be required to submit five essays of 2,000 to 3,000 words in Michaelmas and Hilary term alongside the teaching modules. Essays will be set such that they test knowledge and understanding of critical/fundamental aspects of the module(s). Feedback from one of the module lecturers and a Course Director will be provided for each essay.

Students are encouraged to keep laboratory books, containing write-ups of all laboratory demonstrations. Much use will be made of WebLearn based teaching materials. This together with Journal Clubs will allow the development of critical review and understanding of key scientific papers covering the fundamental concepts, and allow creative discussion between the students and departmental staff.

Summative Assessment feedback: Feedback is provided on the dissertation project by the supervisor and after the viva by the Chairman of the Examiners.

Examination conventions

Examination conventions are the formal record of the specific assessment standards for the course or courses to which they apply. They set out how your examined work will be marked and how the resulting marks will be used to arrive at a final result and classification of your award. They include information on: marking scales; marking and classification criteria; scaling of marks; progression; resits; use of viva voce examinations; penalties for late submission; and penalties for over-length work.

The MSc in Radiation Biology Examination Conventions can be found on the WebLearn site.

The definitive version is at the link above. Modifications will be published to prospective candidates not less than one whole term before the examination takes place or, where assessment takes place in the first term of a course, at the beginning of that term.

Good academic practice and avoiding plagiarism

Plagiarism is presenting someone else’s work or ideas as your own, with or without their consent, by incorporating it into your work without full acknowledgement. All published and unpublished material, whether in manuscript, printed or electronic form, is covered under this definition.

Plagiarism may be intentional or reckless, or unintentional. Under the regulations for examinations, intentional or reckless plagiarism is a disciplinary offence.

The University definition of plagiarism and link to the Oxford Student’s website guidance on plagiarism (www.ox.ac.uk/students/academic/guidance/skills/plagiarism)

Students are encouraged not to rely on heavy reuse of review articles as this can lead to high similarity index score detected by Turn-it-in, and the developments of habits not in accordance with good scientific and academic integrity. Instead students are encouraged to read widely, from many primary sources and synthesise their own arguments and opinions. This requires good time
management, note taking, referencing, research and library skills and information literacy: Oxford Students skills webpage (www.ox.ac.uk/students/academic/guidance/skills)

Further explanatory material is provided in Annex F of the Policy and Guidance for Examiners (www.admin.ox.ac.uk/edc/policiesandguidance/pgexaminers/annexeF)

Entering for University examinations
The Oxford Students website for examination entry and alternative examination arrangements (www.ox.ac.uk/students/academic/exams)

Examination dates
Timetables are published as early as possible and no later than five weeks before the start of the examination at www.ox.ac.uk/students/academic/exams/timetables. If the timetable is not listed it is not yet available. Refer to the provisional start date from the Examinations entry and provisional start dates document available from the Examination entry page in the meantime.

Sitting your examination
Information on (a) the standards of conduct expected in examinations and (b) what to do if you would like examiners to be aware of any factors that may have affected your performance before or during an examination (such as illness, accident or bereavement) are available on the Oxford Students website (www.ox.ac.uk/students/academic/exams/guidance)

External examiner and Examiners’ reports
Board of Examiners for the academic year 2015-16
Prof Anne Kiltie, the Chair of the Board of Examiners, University of Oxford
Dr Anderson Ryan, Examiner, University of Oxford
Prof Conchita Vens, External Examiner, NKI, The Netherlands

Students are strictly prohibited from contacting external examiners directly. If you are unhappy with an aspect of your assessment you may make a complaint or appeal (see below)

Examiners reports are normally available for courses with sufficient numbers of candidates to allow anonymity to be maintained. When candidate numbers are low the Examiner’s reports are withheld. Policy and Guidance for Examiners section

Prizes
A central list of all prizes is at: www.ox.ac.uk/students/fees-funding/prizes-and-awards.
Skills and learning development

Academic progress
Overall responsibility for monitoring and reporting on student progress is held by the Course Director during the taught first two terms, and then passes to the dissertation project supervisor for Trinity Term and the Long Vacation. Formal reporting is via the use of the Graduate Supervision System (GSS). Students can seek advice by email or in person from members of the department who are not directly involved in their teaching or supervision.

Learning development and skills
Students will have the opportunity to develop the following skills during the course:

Intellectual skills: Students will develop a broad and in-depth understanding of the course syllabus (radiation biology, and its applications in clinical radiotherapy and radiation protection) and be able to relate current developments in radiation biology to the future treatment of cancers. Students will also become well versed in the ethical and legal issues associated with the use of radiation and radioactivity. Students will develop the capacity for critical assessment of published material via journal clubs and PBL sessions. Team-building and leadership skills will be accrued via participation in the PBL sessions. Laboratory methods and practical skills, including experimental design and analysis, statistics, and both oral and written presentation skills will be developed by studying the course modules and by undertaking a laboratory research project. Students will be required to search literature and present reasoned arguments in both written form (essays, laboratory reports and extended essays) and verbal form (oral presentations in PBL sessions or other group teaching sessions). In the extended third term, students will have the opportunity to implement their new skills by undertaking a laboratory research project which will be assessed in a variety of ways (dissertation, oral presentation and short viva voce) resulting in further enhancement of the student’s communication skills (written and oral). Intellectual skills will be assessed particularly by examination and oral presentation of the library-based extended essay and the poster presentation/viva voce associated with the research project dissertation. Progress will be assessed continuously by the Course Directors, partly by formative assessment and partly by discussion with students and their supervisors. A successful student will graduate with well-honed communication skills (written and oral); be able to source, appraise and evaluate information; have a sound knowledge of data handling and interpretation; be able to work independently but have an awareness of the importance of time and resource management commensurate with an active team environment.

Practical skills: Students will develop advanced laboratory practical skills, that are relevant to both radiation biology and scientific laboratory research in general, by taking part in laboratory demonstrations/practical sessions during the first (Michaelmas) and second (Hilary) terms. In addition there are other practical skills such as scientific writing and presentation skills included in Michaelmas term. During Hilary term, students will participate in a further series of laboratory practical demonstrations including use of imaging equipment. Further training on the demonstrated equipment will be provided during the extended third term. In the extended third term (six months), students will undertake a laboratory research project within an Institute research laboratory, or a laboratory in a collaborating department. Students will work closely with a research supervisor but will be responsible for independent design and execution of experiments, and also for data analysis and evaluation. Practical skills will be further assessed via the laboratory research project (written dissertation, oral presentation and short viva voce).
Induction
During the first two weeks of the first term, there will be several student orientation sessions which will cover graduate induction, course organisation, Institute/University facilities, IT/email set-up, and laboratory health and safety. Students may also undergo occupational health screening for potential sensitivity to laboratory animal allergens, in preparation for aspects of the course that involve laboratory animals. The first week will additionally provide early opportunities for networking and feedback. Students will also have individual meetings with the Course Coordinator and the Course Directors.

Opportunities for skills training and development
Throughout the course, students will be encouraged by the Course Director and their project supervisor to develop a range of transferable skills. These will be predominantly taught (using a variety of methods) by external lecturers, although Institute staff will be involved in certain aspects.

Students will take part in the Divisional Skills Training Programme and attend Divisional seminar days. Support in this area will be sought primarily from the Division of Medical Sciences Skills & Training Initiatives (https://www.medsci.ox.ac.uk/study/skillstraining), particularly with regard to online skills training. Courses available at the present time include business and commerce, communication skills, computing skills, copyright/patents/intellectual property, critical appraisal, data protection, library skills, statistics training, writing skills, ethics, publishing in science, and career planning. The Institute will also liaise with the Oxford Learning Institute, the Centre for Excellence in Teaching and Learning (CETL) and the Centre for Professional Development (University of Oxford). Transferable skills will be assessed by observation of the students' performance in SDL sessions and tutorials, by the written assignment, by short essays and by observation of oral presentations.

In addition a wide range of information and training materials are available to help you develop your academic skills – including time management, research and library skills, referencing, revision skills and academic writing - through the Oxford Students website

http://www.ox.ac.uk/students/academic/guidance/skills

Opportunities to engage in the department research community
There are many research seminars available within the Department and the wider University. Attendance at relevant seminars is encouraged to enable engagement with the research student cohorts and the University researchers and their visiting speakers.

Careers information and advice
In addition to advice from the Course Directors and your dissertation supervisor more information on careers can be found at the University Careers Service (www.careers.ox.ac.uk).
Student representation, evaluation and feedback

Department representation

The MSc students elect a student representative at the start of Michaelmas Term. This student rep is a member of the Divisional Graduate Joint Consultative Committee (GJCC). Course representative contact details, can be found on the Department’s intranet site.

Division and University representation

Student representatives sitting on the Divisional Board are selected through a process organised by the Oxford University Student Union (OUSU). Details can be found on the OUSU website along with information about student representation at the University level.

Opportunities to provide evaluation and feedback

The Department recognises that regular student feedback is an essential part of the on-going development of the course. Feedback will be regularly obtained from a variety of different sources:

- Each student will be asked to complete a detailed questionnaire upon completion of each taught term, and in addition can provide feedback via the GSS system.
- Dissertation supervisors will be asked to complete a report at the end of the course.
- Internal and External Examiners will be asked to report on the examinations.
- The Department will keep in close contact with graduating students and will follow their career progression.
- The Division of Medical Sciences already administers other relevant MSc programmes. Representative and experienced contributors to these existing programmes (e.g. Pharmacology) will be invited to our Department to provide feedback and appraisal.

The day to day running of the MSc course is overseen by the Course Director and Deputy Course Director and through the MSc Organising Committee meetings (3 times per year) involving the course Director, the Deputy Course Director, the course coordinator and head examiner and student representative for specific agenda items. The major outcomes of the MSc Organising meetings are communicated to the Department’s MSc Oversight Committee for ratification by the Head of Department.

Students on full-time and part-time matriculated courses are surveyed once per year on all aspects of their course (learning, living, pastoral support, college) through the Student Barometer. Previous results can be viewed by students, staff and the general public at: https://www.ox.ac.uk/students/life/student-engagement?wssl=1
Student life and support

Who to contact for help
The Department provides academic support, pastoral support is provided through the College Advisors. Every college has their own systems of support for students, please refer to your College handbook or website for more information on who to contact and what support is available through your college.

If students are ill and unable to attend departmental classes, lectures, practicals etc they should advise the course coordinator as early as possible.

Details of the wide range of sources of support are available more widely in the University are available from the Oxford Students website (www.ox.ac.uk/students/welfare), including in relation to mental and physical health and disability.

Complaints and academic appeals within the Department of Oncology
The University, the Medical Sciences Division and the Oncology Department all hope that provision made for students at all stages of their course of study will make the need for complaints (about that provision) or appeals (against the outcomes of any form of assessment) infrequent.

Nothing in the University’s complaints procedure precludes an informal discussion with the person immediately responsible for the issue that you wish to complain about (and who may not be one of the individuals identified below). This is often the simplest way to achieve a satisfactory resolution.

Many sources of advice are available within colleges, within faculties/departments and from bodies like Student Advice Service provided by Oxford University Student Union (OUSU) or the Counselling Service, which have extensive experience in advising students. You may wish to take advice from one of these sources before pursuing your complaint.

General areas of concern about provision affecting students as a whole should be raised through Joint Consultative Committees or via student representation on the faculty/department’s committees.

Complaints
If your concern or complaint relates to teaching or other provision made by the department, then you should raise it with the chairman of the Course Committee (Dr Mark Hill) or with the Director of Graduate Studies (Prof Ester Hammond) as appropriate. Within the faculty/department the officer concerned will attempt to resolve your concern/complaint informally.

If you are dissatisfied with the outcome, then you may take your concern further by making a formal complaint to the University Proctors. The procedures adopted by the Proctors for the consideration of complaints and appeals are described on the Proctors’ webpage (www.admin.ox.ac.uk/proctors/complaints/proceduresforhandlingcomplaints), the Student Handbook (www.admin.ox.ac.uk/proctors/info/pam) and the relevant Council regulations (www.admin.ox.ac.uk/statutes/regulations/247-062.shtml)
If your concern or complaint relates to teaching or other provision made by your college, you should raise it either with your tutor or with one of the college officers, Senior Tutor, Tutor for Graduates (as appropriate). Your college will also be able to explain how to take your complaint further if you are dissatisfied with the outcome of its consideration.

Academic appeals

An academic appeal is defined as a formal questioning of a decision on an academic matter made by the responsible academic body.

For taught graduate courses, a concern which might lead to an appeal should be raised with your college authorities and the individual responsible for overseeing your work. It must not be raised directly with examiners or assessors. If it is not possible to clear up your concern in this way, you may put your concern in writing and submit it to the Proctors via the Senior Tutor of your college.

For the examination of research degrees, or in relation to transfer or confirmation of status, your concern should be raised initially with the Director of Graduate Studies. Where a concern is not satisfactorily settled by that means, then you, your supervisor, or your college may put your appeal directly to the Proctors.

As noted above, the procedures adopted by the Proctors in relation to complaints and appeals are described on the Proctors’ webpage http://www.ox.ac.uk/students/academic/appeals,

the Student Handbook www.admin.ox.ac.uk/proctors/info/pam

and the relevant Council regulations www.admin.ox.ac.uk/statutes/regulations/247-062.shtml.

Please remember in connection with all the academic appeals that:

- The Proctors are not empowered to challenge the academic judgement of examiners or academic bodies.
- The Proctors can consider whether the procedures for reaching an academic decision were properly followed; i.e. whether there was a significant procedural administrative error; whether there is evidence of bias or inadequate assessment; whether the examiners failed to take into account special factors affecting a candidate’s performance.
- On no account should you contact your examiners or assessors directly.

Student societies

- ARR (Association for Radiation Research) http://www.le.ac.uk/cm/arr/home.html
- BACR (British Association for Cancer Research) http://www.bacr.org.uk/
- BIR (British Institute of Radiology) http://www.bir.org.uk/

Policies and regulations

The University has a wide range of policies and regulations that apply to students. These are easily accessible through the A-Z of University regulations, codes of conduct and policies available on the Oxford Students website www.ox.ac.uk/students/academic/regulations/a-z.
Facilities

Social spaces and facilities
The Old Road Campus Research Building (ORCRB) has a cafe and hot desking areas. Other catering facilities are available on Old Road Campus. There is a common room area within the Robb Smith Seminar room in the Dermatology Department at the Churchill Hospital.

Workspace
The Old Road Research Building (ORCRB) has dedicated study areas. Wireless access is provided throughout the ORCRB via OWL. The ORCRB also has its own computing support group and IT centre if there are problems with equipment or software. Suitable laboratory space will be provided to undertake the dissertation project.

Libraries/museums
The Committee for Libraries and other Information Services coordinates library and IT provision within the Division of Medical Sciences. The ORCRB has its own library and the MSc Committee ensures that there are copies of each of the books on the reading list for the MSc in the dedicated study room. Other library facilities are available with the University and the Colleges.

IT
There is an extensive network of IT resources and associated support in the Institute, and generally across the University of Oxford. The IT systems within the Institute are supported by the IT Services. The Colleges all provide excellent IT resources and Support Officers who are readily available to train and assist students. Also available is IT Services, a dedicated University resource which provides training and facilities for students at a variety of IT levels, from beginners to those wishing to learn sophisticated programming languages. IT Services also provides discounted software and virus protection/security packages. Our students will undertake training with IT Services early in their first term, as part of their on-going professional development. Familiarity with IT systems will be crucial as the MSc Course in Radiation Biology will use WebLearn, the University of Oxford's Virtual Learning Environment (VLE) and maintain links with the Learning Technologies Group to keep up to date on new projects. Students will sit one examination that will normally adopt a multiple choice question (MCQ) format, the qualifying examination in week 8 of Michaelmas term.

The Division has two senior academics responsible for the development of IT resources in teaching, and for educating and encouraging other staff in the use of IT in their teaching methodology.

Experimental facilities/laboratories
Laboratories and other experimental facilities are provided within the Departments offering projects, access arrangements are arranged upon commencement of the projects.