Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The course is comprised of eight compulsory taught modules, followed by the Oxford Residential Week and the Dissertation.

In the September before the course start in October, you will have access to a "Module zero". 

The aim of Module zero is to ensure students have a basic knowledge of cell biology and genetics which they will need before starting the course. It is not compulsory and will be there to strengthen their knowledge of core scientific concepts and will set students up ready for Module 1 and future modules.

Modules : 

1. Introduction to Human Genetics and Genomics

The human genome and its variation; genome architecture; epigenetic modification; DNA damage and repair; cancer genomics; subclonality and mosaicism; cancer predisposition

2. OmicsTechniques and their application to Genomic Medicine

Genomic technologies and techniques to interrogate genomic variation; application in RNA sequencing; metabolomics and proteomics; bioinformatic analysis; evaluating pathogenicity of variants

3. Clinical Interpretation of Precision Diagnostics and Response Monitoring.

State-of-the-art diagnostics; biomarker properties and their clinical use; quality control; regulation; clinical interpretation

4. Clinical Bio-informatics

Processing and analysis of raw sequence data; interrogating major data sources; integrating results with clinical data; practical experience of the Genomics England bioinformatics pipeline; essential computational skills

5. Treatment, Pharmacogenomics, Clinical Trials and Experimental Cancer Therapeutics

Clinical trial design; genomic basis of drug efficacy and drug reaction; using genomics for targeted drug development; pharmacodynamics, resistance, and rational combinations; use of imaging and circulating biomarkers; regulatory aspects of drug development

6. Ethics and Health Economics

Ethical principles in precision medicine; clinical and research ethics; balance of ethical principles with respect to individuals and society; ethics in the context of complexity and uncertainty; economic models in genomic medicine; justification of economics-based decisions

7. Global Perspective on Molecular Pathology, Imaging and Early Detection

Tumour classification and digital pathology; sample requirements for multi-omics; genomic basis of cancer pre-disposition; imaging technologies; regulatory frameworks, clinical and scientific guidelines; global trends; early detection; role of artificial intelligence

8. Onco-immunology and Genomics

 Cancer immunotherapy; tumour-associated antigens; the immune microenvironment; oncolytic viruses and the role of the microbiome; checkpoint inhibitors; immune response in cancer patients; adaptive T-cell therapy; bioinformatics in tumour immunology

 

This course is reviewed annually and subject to minor changes in response to feedback and evaluation.