Search results
Found 10756 matches for
Clinical Trials are both science and an important idea. On 20 Oct the Department of Oncology took its place in the main chamber of the Oxford Town Hall as part of the IF Oxford Science and Ideas Festival 2019.
Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity
Abstract Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
IFNγ Production by Functionally Reprogrammed Tregs Promotes Antitumor Efficacy of OX40/CD137 Bispecific Agonist Therapy.
UNLABELLED: Regulatory T cells (Treg) are highly enriched within many tumors and suppress immune responses to cancer. There is intense interest in reprogramming Tregs to contribute to antitumor immunity. OX40 and CD137 are expressed highly on Tregs, activated and memory T cells, and NK cells. In this study, using a novel bispecific antibody targeting mouse OX40 and CD137 (FS120m), we show that OX40/CD137 bispecific agonism induces potent antitumor immunity partially dependent upon IFNγ production by functionally reprogrammed Tregs. Treatment of tumor-bearing animals with OX40/CD137 bispecific agonists reprograms Tregs into both fragile Foxp3+ IFNγ+ Tregs with decreased suppressive function and lineage-instable Foxp3- IFNγ+ ex-Tregs. Treg fragility is partially driven by IFNγ signaling, whereas Treg instability is associated with reduced IL2 responsiveness upon treatment with OX40/CD137 bispecific agonists. Importantly, conditional deletion of Ifng in Foxp3+ Tregs and their progeny partially reverses the antitumor efficacy of OX40/CD137 bispecific agonist therapy, revealing that reprogramming of Tregs into IFNγ-producing cells contributes to the anti-tumor efficacy of OX40/CD137 bispecific agonists. These findings provide insights into mechanisms by which bispecific agonist therapies targeting costimulatory receptors highly expressed by Tregs potentiate antitumor immunity in mouse models. SIGNIFICANCE: The bispecific antibody FS120, an immunotherapy currently being tested in the clinic, partially functions by inducing anti-tumor activity of Tregs, which results in tumor rejection.
Acquisition of suppressive function by conventional T cells limits antitumor immunity upon Treg depletion.
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein
Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8 + T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8 + T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.
BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis.
Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.
CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function.
CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8-/- mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which were abolished in Ccr8-/- mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy.
A cell-based bioluminescence assay reveals dose-dependent and contextual repression of AP-1-driven gene expression by BACH2
AbstractWhereas effector CD4+ and CD8+ T cells promote immune activation and can drive clearance of infections and cancer, CD4+ regulatory T (Treg) cells suppress their function, contributing to both immune homeostasis and cancer immunosuppression. The transcription factor BACH2 functions as a pervasive regulator of T cell differentiation, promoting development of CD4+ Treg cells and suppressing the effector functions of multiple effector T cell (Teff) lineages. Here, we report the development of a stable cell-based bioluminescence assay of the transcription factor activity of BACH2. Tetracycline-inducible BACH2 expression resulted in suppression of phorbol 12-myristate 13-acetate (PMA)/ionomycin-driven activation of a luciferase reporter containing BACH2/AP-1 target sequences from the mouse Ifng + 18k enhancer. BACH2 expression repressed the luciferase signal in a dose-dependent manner but this activity was abolished at high levels of AP-1 signalling, suggesting contextual regulation of AP-1 driven gene expression by BACH2. Finally, using the reporter assay developed, we find that the histone deacetylase 3 (HDAC3)-selective inhibitor, RGFP966, inhibits BACH2-mediated repression of signal-driven luciferase expression. In addition to enabling mechanistic studies, this cell-based reporter may enable identification of small molecule agonists or antagonists of BACH2 function for drug development.
BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression.
Regulatory T (Treg) cell populations are composed of functionally quiescent resting Treg (rTreg) cells which differentiate into activated Treg (aTreg) cells upon antigen stimulation. How rTreg cells remain quiescent despite chronic exposure to cognate self- and foreign antigens is unclear. The transcription factor BACH2 is critical for early Treg lineage specification, but its function following lineage commitment is unresolved. Here, we show that BACH2 is repurposed following Treg lineage commitment and promotes the quiescence and long-term maintenance of rTreg cells. Bach2 is highly expressed in rTreg cells but is down-regulated in aTreg cells and during inflammation. In rTreg cells, BACH2 binds to enhancers of genes involved in aTreg differentiation and represses their TCR-driven induction by competing with AP-1 factors for DNA binding. This function promotes rTreg cell quiescence and long-term maintenance and is required for immune homeostasis and durable immunosuppression in cancer. Thus, BACH2 supports a "division of labor" between quiescent rTreg cells and their activated progeny in Treg maintenance and function, respectively.
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells.
Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.
Granzyme B Is an Essential Mediator in CD8+ T Cell Killing of Theileria parva-Infected Cells.
There is established evidence that cytotoxic CD8+ T cells are important mediators of immunity against the bovine intracellular protozoan parasite Theileria parva However, the mechanism by which the specific CD8+ T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+ T cells to kill pathogen-infected cells is granule exocytosis, involving the release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating the killing of T. parva-parasitized cells. DNA constructs encoding functional and nonfunctional forms of bovine granzyme B were produced, and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify the expression of functional granzyme B protein. Using this assay, the levels of killing of different T. parva-specific CD8+ T cell clones were found to be significantly correlated with the levels of granzyme B protein but not the levels of mRNA transcript expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+ T cell killing of parasitized cells is dependent on granule exocytosis and, specifically, granzyme B. Further studies showed that the granzyme B-mediated death of parasitized cells is independent of caspases and that granzyme B activates the proapoptotic molecule Bid.
Identification and annotation of bovine granzyme genes reveals a novel granzyme encoded within the trypsin-like locus.
Granzymes are a family of serine proteases found in the lytic granules of cytotoxic T lymphocytes and natural killer (NK) cells, which are involved in killing of susceptible target cells. Most information on granzymes and their enzymatic specificities derive from studies in humans and mice. Although granzymes shared by both species show a high level of conservation, the complement of granzyme genes differs between the species. The aim of this study was to identify granzyme genes expressed in cattle, determine their genomic locations and analyse their sequences to predict likely functional specificities. Orthologues of the five granzyme genes found in humans (A, B, H, K and M) were identified, as well a novel gene designated granzyme O, most closely related to granzyme A. An orthologue of granzyme O was found in pigs and a non-function version was detected in the human genome. Use of specific PCRs demonstrated that all of these genes, including granzyme O, are expressed in activated subsets of bovine lymphocytes, with particularly high levels in CD8 T cells. Consistent with findings in humans and mice, the granzyme-encoding genes were located on three distinct genomic loci, which correspond to different proteolytic enzymatic activities, namely trypsin-like, chymotrypsin-like and metase-like. Analysis of amino acid sequences indicated that the granzyme proteins have broadly similar enzymatic specificities to their human and murine counterparts but indicated that granzyme B has a different secondary specificity. These findings provide the basis for further work to examine their role in the cytotoxic activity of bovine CD8 T cells.
IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes.
IL-7 is essential for the development and homeostasis of T and B lymphocytes and is critical for neonatal lymph node organogenesis because Il7-/- mice lack normal lymph nodes. Whether IL-7 is a continued requirement for normal lymph node structure and function is unknown. To address this, we ablated IL-7 function in normal adult hosts. Either inducible Il7 gene deletion or IL-7R blockade in adults resulted in a rapid loss of lymph node cellularity and a corresponding defect in lymphocyte entry into lymph nodes. Although stromal and dendritic cell components of lymph nodes were present in normal numbers and representation, innate lymphoid cell (ILC) subpopulations were substantially decreased after IL-7 ablation. Testing lymphocyte homing in bone marrow chimeras reconstituted with Rorc-/- bone marrow confirmed that ILC3s in lymph nodes are required for normal lymphocyte homing. Collectively, our data suggest that maintenance of intact lymph nodes relies on IL-7-dependent maintenance of ILC3 cells.
Spatial metabolomics informs the use of clinical imaging for improved detection of cribriform prostate cancer.
Cribriform prostate cancer (crPCa) is associated with poor clinical outcomes, yet its accurate detection remains challenging due to the poor sensitivity of standard-of-care diagnostic tools. Here, we use untargeted spatial metabolomics to identify fatty acid biosynthesis as a key metabolic pathway enriched in crPCa epithelium. We also show that imaging tumor lipid metabolism using [1-11C]acetate PET/CT and proton magnetic resonance spectroscopy differentiates cribriform from noncribriform intermediate-risk prostate cancers in two prospective patient cohorts. These findings support the feasibility of using clinical metabolic imaging techniques as adjunctive tools for improving crPCa detection in clinical practice, with prospective studies in larger cohorts warranted to obtain definitive results.
Structural mimicry of UM171 and neomorphic cancer mutants co-opts E3 ligase KBTBD4 for HDAC1/2 recruitment.
Neomorphic mutations and drugs can elicit unanticipated effects that require mechanistic understanding to inform clinical practice. Recurrent indel mutations in the Kelch domain of the KBTBD4 E3 ligase rewire epigenetic programs for stemness in medulloblastoma by recruiting LSD1-CoREST-HDAC1/2 complexes as neo-substrates for ubiquitination and degradation. UM171, an investigational drug for haematopoietic stem cell transplantation, was found to degrade LSD1-CoREST-HDAC1/2 complexes in a wild-type KBTBD4-dependent manner, suggesting a potential common mode of action. Here, we identify that these neomorphic interactions are mediated by the HDAC deacetylase domain. Cryo-EM studies of both wild-type and mutant KBTBD4 capture 2:1 and 2:2 KBTBD4-HDAC2 complexes, as well as a 2:1:1 KBTBD4-HDAC2-CoREST1 complex, at resolutions spanning 2.7 to 3.3 Å. The mutant and drug-induced complexes adopt similar structural assemblies requiring both Kelch domains in the KBTBD4 dimer for each HDAC2 interaction. UM171 is identified as a bona fide molecular glue binding across the ternary interface. Most strikingly, the indel mutation reshapes the same surface of KBTBD4 providing an example of a natural mimic of a molecular glue. Together, the structures provide mechanistic understanding of neomorphic KBTBD4, while structure-activity relationship (SAR) analysis of UM171 reveals analog S234984 as a more potent molecular glue for future studies.
Converging mechanism of UM171 and KBTBD4 neomorphic cancer mutations.
Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function1,2. As a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma3, the most common embryonal brain tumour in children4. These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST5. However, their mechanism remains unresolved. Here we establish that KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2 as the direct target of the mutant substrate receptor. Using deep mutational scanning, we chart the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat β-propeller domains. The interface between HDAC1 and one of the KBTBD4 β-propellers is stabilized by the medulloblastoma mutations, which insert a bulky side chain into the HDAC1 active site pocket. Our structural and mutational analyses inform how this hotspot E3-neosubstrate interface can be chemically modulated. First, we unveil a converging shape-complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface and proliferation of KBTBD4-mutant medulloblastoma cells. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions.
Radiobiology of High Dose Fractions
Advances in the technology of radiotherapy delivery have resulted in deliberate radiation fluence and dose displacement away from designated normal tissues, and with improved conformity of tumour dose. This applies to normal tissues outside the planning target volume (PTV) in most es. The prospects for hypofractionation improve in these circumstances provided that loss of function of the normal tissue included in the PTV is not considered harmful or deleterious to the subsequent health and well-being of the patient. The radiobiology of large fractions is considered in the context of the linear quadratic (LQ) model of radiation effect and the concept of the biological effective dose (BED). One feature of the model is that it might overestimate high fractional dose effects especially in tumours or tissues which have low α/β ratios. For normal tissues, this is probably advantageous since the model provides a ‘worst e scenario’, and protects against overdosage. Substantial benefits in the therapeutic ratio with increasing fractionation only apply where there is a marked difference between the α/β ratios of the tumour and relevant normal tissues. Thus slow growing tumours with low α/β ratios are preferred candidates for hypofractionation. Where high dose fractions are employed it is vital to ensure that the prescribed dose is not exceeded in relevant normal tissue where overdosage can be harmful. Some worked examples are given to illustrate these principles, using BED calculations, with examples of how to include straightening out of the dose response curve.
Transposable elements as novel therapeutic targets for PARPi-induced synthetic lethality in PcG-mutated blood cancer.
Loss-of-function (LoF) mutations frequently found in human cancers are generally intractable by classical small molecule inhibitor approaches. Among them are mutations affecting polycomb-group (PcG) epigenetic regulators, EZH2 and ASXL1 frequently found in haematological malignancies of myeloid or lymphoid lineage, and their concurrent mutations associates with particularly poor prognosis. While there is clear need to develop novel and effective treatments for these patients, the lack of appropriate disease models and mechanistic insights have significantly hindered the progresses. Here we show that genetic inactivation of Asxl1 and Ezh2 in murine haematopoietic stem/progenitor cells results in highly penetrant haematological malignancies as observed in corresponding human diseases. These PcG proteins regulate both coding and non-coding genomes, leading to marked reactivation of transposable elements (TEs) and DNA damage responses in PcG LoF mutated cells, which create a novel vulnerability for PARP inhibitors (PARPi)-induced synthetic lethality. Using both mouse models and primary patient samples, we demonstrate that Asxl1/Ezh2 mutated cells are highly sensitive to PARPi that induce excessive DNA damage and significantly extend disease latency. Intriguingly the observed PARPi-sensitivity can be specifically overridden by reverse transcriptase inhibitors that interrupt target-site primed reverse transcription (TPRT) and life cycle of TEs. This mechanism is contrastingly different from the current concept of BRCAness associated PARPi-induced synthetic lethality, which largely rely on deficient homologous recombination and is independent on reverse transcriptase inhibitors. Together, this study reveals a novel application and mechanism of PARPi-induced synthetic lethal targeting of blood cancers with reactivated TEs such as those carrying PcG epigenetic mutations.
Analysis of IDH1 and IDH2 mutations as causes of the hypermethylator phenotype in colorectal cancer.
The CpG island methylator phenotype (CIMP) occurs in many colorectal cancers (CRCs). CIMP is closely associated with global hypermethylation and tends to occur in proximal tumours with microsatellite instability (MSI), but its origins have been obscure. A few CRCs carry oncogenic (gain-of-function) mutations in isocitrate dehydrogenase IDH1. Whilst IDH1 is an established CRC driver gene, the low frequency of IDH1-mutant CRCs (about 0.5%) has meant that the effects and molecular covariates of those mutations have not been established. We first showed computationally that IDH2 is also a CRC driver. Using multiple public and in-house CRC datasets, we then identified IDH mutations at the hotspots (IDH1 codons 132 and IDH2 codons 140 and 172) frequently mutated in other tumour types. Somatic IDH mutations were associated with BRAF mutations and expression of mucinous/goblet cell markers, but not with KRAS mutations or MSI. All IDH-mutant CRCs were CIMP-positive, mostly at a high level. Cell and mouse models showed that IDH mutation was plausibly causal for DNA hypermethylation. Whilst the aetiology of hypermethylation generally remains unexplained, IDH-mutant tumours did not form a discrete methylation subcluster, suggesting that different underlying mechanisms can converge on similar final methylation phenotypes. Although further analysis is required, IDH mutations may be the first cause of hypermethylation to be identified in a common cancer type, providing evidence that CIMP and DNA methylation represent more than aging-related epiphenomena. Cautious exploration of mutant IDH inhibitors and DNA demethylating agents is suggested in managing IDH-mutant CRCs. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Investigating the therapeutic potential of FLASH radiotherapy - a treatment planning study.
PURPOSE/BACKGROUND: Ultra-high dose rate radiotherapy (RT) has shown potential for differential normal tissue (NT) sparing (a phenomenon termed the "FLASH effect"), particularly for larger fraction doses (>5 Gy). However, transitioning to hypofractionation may increase late-reacting NT toxicity, counteracting the FLASH effect. This study evaluates whether FLASH-RT can provide netsparing for organs at risk (OARs) and NT within the PTV under the assumption of standard-of-care dose-conformity. MATERIAL/METHODS: Five patients per tumor-site (breast, head-and-neck, prostate, and glioblastoma) were analyzed. Using the Linear-Quadratic model, dose-distributions with higher dose per fraction were derived from standard schedules while maintaining tumor control efficacy. FLASH-modified dose-distributions were simulated voxel-by-voxel using logistic regression-based dose-modifying factors modeled from preclinical data. These plans were converted to standard fractionation equivalents for radiobiological comparisons of NT damage. Netsparing was defined as the difference in OAR dose-volume histogram parameters between standard and FLASH-modified plans, normalized to the prescribed dose. Commonly used α/β-ratios for tumors and late-reacting NT were applied. RESULTS: The netsparing for OARs and PTV varied strongly by tumor location. Breast and prostate cases showed positive netsparing, indicating that the FLASH effect outweighed increased toxicity. Even under a conservative scenario (higher α/βT vs. α/βNT), most OARs showed positive netsparing. In glioblastoma and head-and-neck cases, no netsparing was observed, indicating increased toxicity even with FLASH induced NT-sparing. CONCLUSION: FLASH-RT appears to be beneficial for tumor sites where α/βT ≲ α/βNT, such as breast and prostate. However, not all tumor sites may benefit from FLASH-RT, highlighting the need for site-specific consideration for FLASH-RT implementation.