Search results
Found 10261 matches for
Results from the ATOM clinical trial at the University of Oxford have shown that the anti-malarial drug Atovaquone can reduce very low oxygen tumour environments. This has the potential to make cancers behave less aggressively and to improve the impact of everyday cancer treatments.
Generation of synthetic CT–like imaging of the spine from biplanar radiographs: comparison of different deep learning architectures
OBJECTIVE This study compared two deep learning architectures—generative adversarial networks (GANs) and convolutional neural networks combined with implicit neural representations (CNN-INRs)—for generating synthetic CT (sCT) images of the spine from biplanar radiographs. The aim of the study was to identify the most robust and clinically viable approach for this potential intraoperative imaging technique. METHODS A spine CT dataset of 216 training and 54 validation cases was used. Digitally reconstructed radiographs (DRRs) served as 2D inputs for training both models under identical conditions for 170 epochs. Evaluation metrics included the Structural Similarity Index Measure (SSIM), peak signal-to-noise ratio (PSNR), and cosine similarity (CS), complemented by qualitative assessments of anatomical fidelity. RESULTS The GAN model achieved a mean SSIM of 0.932 ± 0.015, PSNR of 19.85 ± 1.40 dB, and CS of 0.671 ± 0.177. The CNN-INR model demonstrated a mean SSIM of 0.921 ± 0.015, PSNR of 21.96 ± 1.20 dB, and CS of 0.707 ± 0.114. Statistical analysis revealed significant differences for SSIM (p = 0.001) and PSNR (p < 0.001), while CS differences were not statistically significant (p = 0.667). Qualitative evaluations consistently favored the GAN model, which produced more anatomically detailed and visually realistic sCT images. CONCLUSIONS This study demonstrated the feasibility of generating spine sCT images from biplanar radiographs using GAN and CNN-INR models. While neither model achieved clinical-grade outputs, the GAN architecture showed greater potential for generating anatomically accurate and visually realistic images. These findings highlight the promise of sCT image generation from biplanar radiographs as an innovative approach to reducing radiation exposure and improving imaging accessibility, with GANs emerging as the more promising avenue for further research and clinical integration. https: //thejns.org/doi/abs/10.3171/2025.4.FOCUS25170
RP1 Combined With Nivolumab in Advanced Anti-PD-1-Failed Melanoma (IGNYTE).
PURPOSE: Effective treatment options for melanoma after immune checkpoint blockade failure are limited. RP1 (vusolimogene oderparepvec) is an HSV-1-based oncolytic immunotherapy, here evaluated in combination with nivolumab in anti-PD-1-failed melanoma. PATIENTS AND METHODS: Patients had advanced melanoma that had confirmed progression on anti-PD-1 (≥8 weeks, last prior treatment). RP1 was administered intratumorally (≤8 doses, ≤10 mL/dose; additional doses allowed) with nivolumab (≤2 years). The objective response rate (ORR) was assessed by independent central review using Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS: Of 140 patients enrolled, 48.6% had stage IVM1b/c/d disease, 65.7% had primary anti-PD-1 resistance, 56.4% were PD-L1 negative, and 46.4% received prior anti-PD-1 and anti-CTLA-4 therapy (43.6% in combination and 2.9% sequentially). Confirmed ORR (95% CI) was 32.9% (25.2%-41.3%; 15.0% complete response). Responses occurred with similar frequency, depth, duration, and kinetics for injected and non-injected, including visceral, lesions. Median (95% CI) duration of response was 33.7 (14.1-not reached) months. Overall survival rates (95% CI) at 1 and 2 years were 75.3% (66.9%-81.9%) and 63.3% (53.6%-71.5%), respectively. Biomarker analysis demonstrated broad immune activation associated with response, including increased CD8+ T-cell infiltration and PD-L1 expression. Treatment-related adverse event rates were 77.1% grade 1/2, 9.3% grade 3, 3.6% grade 4, and no grade 5 events. CONCLUSIONS: RP1 combined with nivolumab provided deep and durable systemic responses in patients with anti-PD-1-failed melanoma, including those with poor prognostic factors. The safety profile was favorable, with mostly grade 1/2 adverse events. (Funded by Replimune, Inc.; IGNYTE ClinicalTrials.gov, NCT03767348; EudraCT number, 2016-004548-12).
Analysis of IDH1 and IDH2 mutations as causes of the hypermethylator phenotype in colorectal cancer.
The CpG island methylator phenotype (CIMP) occurs in many colorectal cancers (CRCs). CIMP is closely associated with global hypermethylation and tends to occur in proximal tumours with microsatellite instability (MSI), but its origins have been obscure. A few CRCs carry oncogenic (gain-of-function) mutations in isocitrate dehydrogenase IDH1. Whilst IDH1 is an established CRC driver gene, the low frequency of IDH1-mutant CRCs (about 0.5%) has meant that the effects and molecular covariates of those mutations have not been established. We first showed computationally that IDH2 is also a CRC driver. Using multiple public and in-house CRC datasets, we then identified IDH mutations at the hotspots (IDH1 codons 132 and IDH2 codons 140 and 172) frequently mutated in other tumour types. Somatic IDH mutations were associated with BRAF mutations and expression of mucinous/goblet cell markers, but not with KRAS mutations or MSI. All IDH-mutant CRCs were CIMP-positive, mostly at a high level. Cell and mouse models showed that IDH mutation was plausibly causal for DNA hypermethylation. Whilst the aetiology of hypermethylation generally remains unexplained, IDH-mutant tumours did not form a discrete methylation subcluster, suggesting that different underlying mechanisms can converge on similar final methylation phenotypes. Although further analysis is required, IDH mutations may be the first cause of hypermethylation to be identified in a common cancer type, providing evidence that CIMP and DNA methylation represent more than aging-related epiphenomena. Cautious exploration of mutant IDH inhibitors and DNA demethylating agents is suggested in managing IDH-mutant CRCs. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Cellular imbalance in proximal and distal lung of CFTR−/− sheep in utero and at birth
Background: The Lung is the major focus of therapeutic approaches for the inherited disorder cystic fibrosis (CF) as without treatment lung disease is life-limiting. However, the initiating events that predispose the CF lung to cycles of infection, inflammation and resultant tissue damage are still unclear. Inflammation may occur in the CF lung prior to birth in human and several large animal models suggesting an in utero origin for the disease and encouraging further studies prior to birth. Methods: Here we used the sheep model of CF (CFTR−/−) and age-matched wild-type (WT) sheep of the same breed to investigate the single cell transcriptomes of proximal and distal lung tissue at 80 days and 120 days of gestation and at term (147 days). Single cell RNA-seq was performed on tissues from 4 to 7 animals of each genotype (WT and CFTR−/−) at each time point. Results: At term, FOXJ1-expressing ciliated cells are overrepresented in both lung regions from CFTR−/− lambs, while secretory epithelial and basal cells are underrepresented in proximal lung, as are T cells and monocytes in distal lung. The imbalance in ciliated and basal cells was confirmed by immunohistochemistry. At 120 days of gestation, lymphoid cells are slightly more abundant in proximal and distal lung from CFTR−/− animals compared to WT, consistent with the transient CF-associated inflammatory response in utero. At 80 days of gestation, T and B cells are underrepresented in both lung regions. Conclusions: The differences in epithelial cell abundance observed in the CFTR−/− lambs at term may reflect sequelae from the loss of CFTR on lung development and differentiation in utero. These findings provide novel insights into the cellular mechanisms of pathology and may be relevant to the design of new therapeutic approaches for CF lung disease.
Ex vivo model of functioning human lymph node reveals role for innate lymphocytes and stroma in response to vaccine adjuvant.
Immunological processes that underpin human immune responses to therapeutics and vaccine components, such as vaccine adjuvants, remain poorly defined due to a paucity of models that faithfully recapitulate immune activation in lymphoid tissues. We describe precision-cut human lymph node (LN) slices as a functioning, architecturally preserved, full-organ cross-sectional model system. Using single-cell transcriptomics and multiplexed imaging, we explore early inflammatory response to a potent, clinically relevant liposomal vaccine adjuvant containing a TLR4-agonist and QS-21 saponin. Both TLR4 and NLRP3 inflammasome activation are involved in the direct initiation of the inflammatory response to adjuvant by monocytes and macrophages (Mon./Mac.) with secretion of interleukin (IL)-1β, but not IL-18, dependent on TLR4 signaling. Innate lymphoid cells, including natural killer cells, are indirectly activated by Mon./Mac.-produced cytokines, signaling downstream to B cells via interferon-γ secretion. Resident LN stromal populations, primed both directly and indirectly by vaccine adjuvant, are instrumental in mediating inflammatory cell recruitment, particularly neutrophils.
Precision Prevention Studies: A Targeted Approach to Cancer Prevention.
Precision prevention trials are biologically driven interception studies conducted in high cancer risk groups. These are smaller, potentially faster, cheaper, and more commercially attractive than traditional large-scale population prevention studies. In this article, we discuss the key challenges of conducting precision prevention research and their mitigations.
Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity
Abstract Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
IFNγ Production by Functionally Reprogrammed Tregs Promotes Antitumor Efficacy of OX40/CD137 Bispecific Agonist Therapy.
UNLABELLED: Regulatory T cells (Treg) are highly enriched within many tumors and suppress immune responses to cancer. There is intense interest in reprogramming Tregs to contribute to antitumor immunity. OX40 and CD137 are expressed highly on Tregs, activated and memory T cells, and NK cells. In this study, using a novel bispecific antibody targeting mouse OX40 and CD137 (FS120m), we show that OX40/CD137 bispecific agonism induces potent antitumor immunity partially dependent upon IFNγ production by functionally reprogrammed Tregs. Treatment of tumor-bearing animals with OX40/CD137 bispecific agonists reprograms Tregs into both fragile Foxp3+ IFNγ+ Tregs with decreased suppressive function and lineage-instable Foxp3- IFNγ+ ex-Tregs. Treg fragility is partially driven by IFNγ signaling, whereas Treg instability is associated with reduced IL2 responsiveness upon treatment with OX40/CD137 bispecific agonists. Importantly, conditional deletion of Ifng in Foxp3+ Tregs and their progeny partially reverses the antitumor efficacy of OX40/CD137 bispecific agonist therapy, revealing that reprogramming of Tregs into IFNγ-producing cells contributes to the anti-tumor efficacy of OX40/CD137 bispecific agonists. These findings provide insights into mechanisms by which bispecific agonist therapies targeting costimulatory receptors highly expressed by Tregs potentiate antitumor immunity in mouse models. SIGNIFICANCE: The bispecific antibody FS120, an immunotherapy currently being tested in the clinic, partially functions by inducing anti-tumor activity of Tregs, which results in tumor rejection.
Acquisition of suppressive function by conventional T cells limits antitumor immunity upon Treg depletion.
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein
Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8 + T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8 + T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.
BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis.
Natural killer (NK) cells are critical to immune surveillance against infections and cancer. Their role in immune surveillance requires that NK cells are present within tissues in a quiescent state. Mechanisms by which NK cells remain quiescent in tissues are incompletely elucidated. The transcriptional repressor BACH2 plays a critical role within the adaptive immune system, but its function within innate lymphocytes has been unclear. Here, we show that BACH2 acts as an intrinsic negative regulator of NK cell maturation and function. BACH2 is expressed within developing and mature NK cells and promotes the maintenance of immature NK cells by restricting their maturation in the presence of weak stimulatory signals. Loss of BACH2 within NK cells results in accumulation of activated NK cells with unrestrained cytotoxic function within tissues, which mediate augmented immune surveillance to pulmonary cancer metastasis. These findings establish a critical function of BACH2 as a global negative regulator of innate cytotoxic function and tumor immune surveillance by NK cells.
CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function.
CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8-/- mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which were abolished in Ccr8-/- mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy.
A cell-based bioluminescence assay reveals dose-dependent and contextual repression of AP-1-driven gene expression by BACH2
AbstractWhereas effector CD4+ and CD8+ T cells promote immune activation and can drive clearance of infections and cancer, CD4+ regulatory T (Treg) cells suppress their function, contributing to both immune homeostasis and cancer immunosuppression. The transcription factor BACH2 functions as a pervasive regulator of T cell differentiation, promoting development of CD4+ Treg cells and suppressing the effector functions of multiple effector T cell (Teff) lineages. Here, we report the development of a stable cell-based bioluminescence assay of the transcription factor activity of BACH2. Tetracycline-inducible BACH2 expression resulted in suppression of phorbol 12-myristate 13-acetate (PMA)/ionomycin-driven activation of a luciferase reporter containing BACH2/AP-1 target sequences from the mouse Ifng + 18k enhancer. BACH2 expression repressed the luciferase signal in a dose-dependent manner but this activity was abolished at high levels of AP-1 signalling, suggesting contextual regulation of AP-1 driven gene expression by BACH2. Finally, using the reporter assay developed, we find that the histone deacetylase 3 (HDAC3)-selective inhibitor, RGFP966, inhibits BACH2-mediated repression of signal-driven luciferase expression. In addition to enabling mechanistic studies, this cell-based reporter may enable identification of small molecule agonists or antagonists of BACH2 function for drug development.
BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression.
Regulatory T (Treg) cell populations are composed of functionally quiescent resting Treg (rTreg) cells which differentiate into activated Treg (aTreg) cells upon antigen stimulation. How rTreg cells remain quiescent despite chronic exposure to cognate self- and foreign antigens is unclear. The transcription factor BACH2 is critical for early Treg lineage specification, but its function following lineage commitment is unresolved. Here, we show that BACH2 is repurposed following Treg lineage commitment and promotes the quiescence and long-term maintenance of rTreg cells. Bach2 is highly expressed in rTreg cells but is down-regulated in aTreg cells and during inflammation. In rTreg cells, BACH2 binds to enhancers of genes involved in aTreg differentiation and represses their TCR-driven induction by competing with AP-1 factors for DNA binding. This function promotes rTreg cell quiescence and long-term maintenance and is required for immune homeostasis and durable immunosuppression in cancer. Thus, BACH2 supports a "division of labor" between quiescent rTreg cells and their activated progeny in Treg maintenance and function, respectively.
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells.
Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.
Granzyme B Is an Essential Mediator in CD8+ T Cell Killing of Theileria parva-Infected Cells.
There is established evidence that cytotoxic CD8+ T cells are important mediators of immunity against the bovine intracellular protozoan parasite Theileria parva However, the mechanism by which the specific CD8+ T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+ T cells to kill pathogen-infected cells is granule exocytosis, involving the release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating the killing of T. parva-parasitized cells. DNA constructs encoding functional and nonfunctional forms of bovine granzyme B were produced, and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify the expression of functional granzyme B protein. Using this assay, the levels of killing of different T. parva-specific CD8+ T cell clones were found to be significantly correlated with the levels of granzyme B protein but not the levels of mRNA transcript expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+ T cell killing of parasitized cells is dependent on granule exocytosis and, specifically, granzyme B. Further studies showed that the granzyme B-mediated death of parasitized cells is independent of caspases and that granzyme B activates the proapoptotic molecule Bid.