Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Platinum(IV) anticancer agents have demonstrated the potential to overcome the limitations associated with the widely used Pt(II) chemotherapeutics, cisplatin, carboplatin, and oxaliplatin. In order to identify therapeutic scenarios where this type of chemotherapy can be applied, an improved understanding on the intracellular reduction of Pt(IV) complexes is needed. Here, we report the synthesis of two fluorescence responsive oxaliplatin(IV)(OxPt) complexes, OxaliRes and OxaliNap. Sodium ascorbate (NaAsc) was shown to reduce each OxPt(IV) complex resulting in increases in their respective fluorescence emission intensities at 585 and 545 nm. The incubation of each OxPt(IV) complex with a colorectal cancer cell line resulted in minimal changes to the respective fluorescence emission intensities. In contrast, the treatment of these cells with NaAsc showed a dose-dependent increase in fluorescence emission intensity. With this knowledge in hand, we tested the reducing potential of tumor hypoxia, where an oxygen-dependent bioreduction was observed for each OxPt(IV) complex with <0.1% O2 providing the greatest fluorescence signal. Clonogenic cell survival assays correlated with these observations demonstrating significant differences in toxicity between hypoxia (<0.1% O2) and normoxia (21% O2). To the best of our knowledge, this is the first report showing carbamate-functionalized OxPt(IV) complexes as potential hypoxia-activated prodrugs.

Original publication

DOI

10.1021/jacs.3c03320

Type

Journal article

Journal

J Am Chem Soc

Publication Date

21/06/2023

Volume

145

Pages

12998 - 13002

Keywords

Oxaliplatin, Fluorescence, Cell Line, Tumor, Antineoplastic Agents, Cisplatin, Platinum, Prodrugs, Oxalidaceae, Neoplasms