Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

hSgo2 (previously annotated as Tripin) was recently reported to be a new inner centromere protein that is essential for centromere cohesion (Kitajima et al., 2006). In this study, we show that hSgo2 exhibits a dynamic distribution pattern, and that its localization depends on the BUB1 and Aurora B kinases. hSgo2 is concentrated at the inner centromere of unattached kinetochores, but extends toward the kinetochores that are under tension. This localization pattern is reminiscent of MCAK, which is a microtubule depolymerase that is believed to be a key component of the error correction mechanism at kinetochores. Indeed, we found that hSgo2 is essential for MCAK to localize to the centromere. Delocalization of MCAK accounts for why cells depleted of hSgo2 exhibit kinetochore attachment defects that go uncorrected, despite a transient delay in the onset of anaphase. Consequently, these cells exhibit a high frequency of lagging chromosomes when they enter anaphase. We confirmed that hSgo2 is associated with PP2A, and we propose that it contributes to the spatial regulation of MCAK activity within inner centromere and kinetochore.

Original publication

DOI

10.1083/jcb.200701122

Type

Journal article

Journal

J Cell Biol

Publication Date

07/05/2007

Volume

177

Pages

413 - 424

Keywords

Anaphase, Aurora Kinase B, Aurora Kinases, Cell Cycle Proteins, HeLa Cells, Humans, Kinesin, Kinetochores, Phosphoprotein Phosphatases, Protein Binding, Protein Kinases, Protein Transport, Protein-Serine-Threonine Kinases