Promises under pressure: the modest predictive power of polygenic risk scores.
Horton R. et al, (2026), Eur J Hum Genet
Mathematical Modeling Quantifies "Just-Right" APC Inactivation for Colorectal Cancer Initiation.
Brunet Guasch M. et al, (2025), Cancer Res, 85, 5113 - 5127
Loss of IDH1 and IDH2 mutations during the evolution of metastatic chondrosarcoma.
Cross W. et al, (2025), Genome Biol, 26
Analysis of IDH1 and IDH2 mutations as causes of the hypermethylator phenotype in colorectal cancer.
Ward JC. et al, (2025), J Pathol, 267, 40 - 55
Replication-associated mechanisms contribute to an increased CpG > TpG mutation burden in mismatch repair-deficient cancers.
Ward JC. et al, (2025), Genome Med, 17
GWAS meta-analysis identifies five susceptibility loci for endometrial cancer.
Ramachandran D. et al, (2025), EBioMedicine, 118
Epithelial GREMLIN1 disrupts intestinal epithelial-mesenchymal crosstalk to induce a wnt-dependent ectopic stem cell niche through stromal remodelling.
Mulholland EJ. et al, (2025), Nat Commun, 16
The role of MLH1, MSH2 and MSH6 in the development of colorectal cancer in Uganda.
Wismayer R. et al, (2025), BMC Cancer, 25
Genetic variation at 11q23.1 confers colorectal cancer risk by dysregulation of colonic tuft cell transcriptional activator POU2AF2.
Rajasekaran V. et al, (2025), Gut, 74, 787 - 803
Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis.
Woolley CE. et al, (2025), Mol Cancer Res, 23, 300 - 312
Data from Coevolution of Atypical <i>BRAF</i> and <i>KRAS</i> Mutations in Colorectal Tumorigenesis
Woolley CE. et al, (2025)
Figure 3 from Coevolution of Atypical <i>BRAF</i> and <i>KRAS</i> Mutations in Colorectal Tumorigenesis
Woolley CE. et al, (2025)
Figure 4 from Coevolution of Atypical <i>BRAF</i> and <i>KRAS</i> Mutations in Colorectal Tumorigenesis
Woolley CE. et al, (2025)
Figure 5 from Coevolution of Atypical <i>BRAF</i> and <i>KRAS</i> Mutations in Colorectal Tumorigenesis
Woolley CE. et al, (2025)

