Andrew Soltan
MB BChir MA (Cantab) MA (Oxon) MRCP
Fellow in Clinical Artificial Intelligence & Specialty Registrar in Medical Oncology
- Specialty Registrar in Medical Oncology, Oxford University Hospitals NHS Foundation Trust
- Fellow in Clinical Artificial Intelligence
- NIHR Academic Clinical Fellow
I am a Fellow in Clinical Artificial Intelligence and Specialty Registrar in Medical Oncology at Oxford University Hospitals NHS Foundation Trust.
My research investigates the application of transformer-architecture models to routinely collected healthcare data, aiming to develop, evaluate and deploy clinical tools for Cancer care pathways.
During my NIHR Academic Clinical Fellowship, my research specialism was developing AI-enabled screening, diagnostic and prognostic tools using routinely collected healthcare data. Working with Professor David Clifton's Computational Health Informatics group, I led development and evaluation of an AI screening test for COVID-19 in emergency departments, based upon blood tests and vital signs recorded within 1h of a patient arriving in hospital. The CURIAL AI test was piloted in Oxford's John Radcliffe Hospital Emergency Department in early-2021, and described in an accompanying The Lancet Digital Health commentary as "an elegant breakthrough to enhance the clinical decision-making process in the age of artificial intelligence".
To support confidential development of AI models within the NHS, I have developed a platform for low-cost federated learning using inexpensive micro-computing devices. The CURIAL-Federated platform was piloted across 4 NHS Trusts in 2022 to train and evaluate a Covid-19 screening test, with participating hospitals retaining custody of their data at all times.
Alongside my clinical and research interests, I lead the 10-week practical dissertation module for the MSc in Applied Digital Health. The dissertation placements offer students an immersive practical experience and chance to develop a specialism within the digital health research and translational pipeline, while expanding their professional networks.
Recent publications
-
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
Journal article
YANG J. et al, (2023), Nature Machine Intelligence
-
Deep Reinforcement Learning for Multi-class Imbalanced Training: Applications in Healthcare
Journal article
YANG J. et al, (2023), Machine Learning
-
Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening
Journal article
YANG J. et al, (2023), npj Digital Medicine
-
A scalable federated learning solution for emergency care using low cost microcomputing: Privacy-preserving development and evaluation of a COVID-19 screening test in UK hospitals
Journal article
Soltan A. et al, (2023), The Lancet. Digital Health
-
Addressing Label Noise for Electronic Health Records: Insights from Computer Vision for Tabular Data
Preprint
Yang J. et al, (2023)
-
Generalizability Assessment of AI Models Across Hospitals: A Comparative Study in Low-Middle Income and High Income Countries
Preprint
Yang J. et al, (2023)
-
Geometrically-aggregated training samples: Leveraging summary statistics to enable healthcare data democratization
Preprint
Yang J. et al, (2023)
-
Deep Reinforcement Learning for Multi-class Imbalanced Training
Preprint
Yang J. et al, (2022)
-
Privacy-aware Early Detection of COVID-19 through Adversarial Training
Preprint
Rohanian O. et al, (2022)
-
Algorithmic Fairness and Bias Mitigation for Clinical Machine Learning: A New Utility for Deep Reinforcement Learning
Preprint
Yang J. et al, (2022)