Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cause of human cancers is imputed to the genetic alterations at nucleotide and chromosomal levels of ill-fated cells. It has long been recognized that genetic instability-the hallmark of human cancers-is responsible for the cellular changes that confer progressive transformation on cancerous cells. How cancer cells acquire genetic instability, however, is unclear. We propose that tumor development is a result of expansion and progression-two complementary aspects that collaborate with the tumor microenvironment-hypoxia in particular, on genetic alterations through the induction of genetic instability. In this article, we review the recent literature regarding how hypoxia functionally impairs various DNA repair pathways resulting in genetic instability and discuss the biomedical implications in cancer biology and treatment.

Original publication

DOI

10.1007/s00109-006-0133-6

Type

Journal article

Journal

J Mol Med (Berl)

Publication Date

02/2007

Volume

85

Pages

139 - 148

Keywords

DNA Repair, Disease Progression, Genomic Instability, Humans, Hypoxia, Neoplasms