Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Congratulations to Dr Xiao Wan from Professor Eric O’Neill’s group for her success in obtaining an NC3Rs Training Fellowship for ‘Developing human organotypic perfused bioreactors for physiologically reproducible therapeutic compound screening of a tumour microenvironment’.

Xiao's research at the CRUK/MRC Oxford Institute for Radiation Oncology in the Department of Oncology focuses on developing bioreactors that more accurately recapitulate the tumour microenvironment, including the interplay of tumour and stromal cells, than current in vitro systems, by including perfusion by blood vessels.

In 2017, the National Centre for the Replacement Refinement and Reduction of Animals in Research (NC3Rs) announced seven new fellowships, a commitment of nearly £1.2 million, to support talented early career scientists in the discovery and development of new technologies and approaches to replace, reduce and refine the use of animals in scientific research. The NC3Rs provides two type of fellowships awards: Training Fellowships for researchers with less than three years postdoctoral experience and the intermediate career stage David Sainsbury Fellowships for researchers with two to six years of postdoctoral experience.

Using the funding from the Training Fellowship, Xiao hopes to develop highly interdisciplinary tools for creating artificial tissue in perfusion culture to replicate physiological and pathological processes with less chemical fluctuation and biological stress.

Xiao commented: "The outcome will benefit the oncology research communities, including researchers in Oxford as well as my collaborators in China, by enabling them to test their therapeutics in a better-defined tissue microenvironment compared with petri-dish methods. The techniques optimised by this project will have the potential to replace and reduce the use of animals in the preclinical evaulation of therapeutics, especially those targeting at tissue microenvironment, such as the epigenetic events in cancer development."

Further information about Xiao's project can be found on the NC3Rs website.

Similar stories

Funding to research metformin’s ability to delay or prevent cancers driven by the mutated TP53 gene

A research project embedded within the Metformin in Li Fraumeni (MILI) trial will investigate metformin’s mechanism of action when taken as a preventative for mTP53-driven cancers.

Cancer patients remain at higher risk of severe COVID-19 disease despite third dose booster vaccine

A large population-level assessment reveals third dose COVID-19 vaccination is effective for most patients with cancer, but effectiveness is lower than in the general population, particularly in patients who have undergone recent chemotherapy and those with lymphoma.

Time-varying nature of clinical risk factors for pancreatic cancer may aid earlier diagnosis

Body mass index, blood tests, comorbidities and medication use are temporally associated with cancer risk in the three years before a pancreatic cancer diagnosis.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

OUH agrees long COVID research collaboration with Polarean

The collaboration will look at understanding the long-term effects of COVID-19 through cutting-edge MRI analysis.

Lung abnormalities found in long COVID patients with breathlessness

Researchers have identified abnormalities in the lungs of long COVID patients who are experiencing breathlessness that cannot be detected with routine tests.