Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Professor Nicola Sibson of the Department of Oncology has been awarded a grant worth almost £200,000 by research charity Breast Cancer Now to fund cutting-edge research to uncover novel treatment combinations to control breast cancer that has spread to the brain.

Expression of the cell adhesion molecule VCAM–1 (red) on vascular endothelial cells showing close association with small metastatic tumour (green) in mouse brain. Cell nuclei are shown in blue.

The news comes on Secondary Breast Cancer Awareness Day (Friday 13 October 2017), as leading charity Breast Cancer Now announces more than £700,000 of funding across the UK for research specifically targeting secondary (or metastatic) breast cancer – where the disease has spread to another part of the body.

When breast cancer spreads, known as secondary or metastatic breast cancer, it becomes incurable. While metastatic breast cancer can sometimes be controlled using different combinations of treatments, it cannot be cured, and almost all of the 11,500 women that die as a result of breast cancer each year in the UK will have seen their cancer spread. Nearly 600 women in Oxfordshire are diagnosed with breast cancer every year, and over 100 women in the region die from the disease each year.1

The brain is protected by its own security system, a structure called the blood-brain barrier (BBB). The BBB acts as a filter, preventing harmful substances from reaching the brain. However the virtually impenetrable nature of the BBB makes delivery of drugs to the brain extremely difficult, meaning there are few effective treatments for breast tumours that have spread to the brain (brain metastases).

Up to a third of patients with secondary breast cancer have seen their cancer spread to the brain. This can cause varying problems with brain function depending on which areas the breast cancer cells have spread to, and can often severely affect a patient’s quality of life, with debilitating symptoms such as changes in mood or behaviour, seizures, headaches, vomiting and uncoordinated movement.

Professor Sibson, Professor of Imaging Neuroscience at the CRUK/MRC Oxford Institute for Radiation Oncology has previously found that one element of the immune system, the inflammatory response, is important in the spread of breast cancer to the brain. Her team has previously found that certain inflammatory molecules are present at higher levels in brain metastases, and may be key drivers of tumour growth.

With funding from Breast Cancer Now, Professor Sibson and her team will undertake a three-year project to pinpoint which combinations of anti-inflammatory drugs, which are able to cross the BBB, reduce the growth of breast tumours in the brain most effectively, and whether these could also be given alongside radiotherapy with greater effect.

Professor Sibson said “We urgently need to find ways to treat brain metastases more effectively and improve survival rates. With this funding from Breast Cancer Now our aim is to increase treatment options for patients suffering metastatic spread to the brain. We hope that by targeting the innate immune system we can halt or reduce tumour growth, and enhance the effectiveness of radiotherapy.”

The scientists will first implant breast tumours into the brains of mice, before testing a range of anti-inflammatory drugs and examining the effect on tumour growth. The team will then combine the most effective anti-inflammatories with radiotherapy in mice to identify which combinations best control tumour growth in the brain. The researchers hope to identify new ways to predict which patients are most likely to benefit from anti-inflammatory drugs and radiotherapy. In addition, the team will explore how another component of the inflammatory response, adhesion molecules, are involved in tumour growth, and whether targeting these directly could also be an effective treatment strategy.

Dr Richard Berks, Senior Research Communications Officer at Breast Cancer Now said “Professor Sibson’s research could pave the way for new treatment combinations that could halt tumour growth in men and women whose breast cancers have sadly spread to the brain. Anti-inflammatory drugs are already used to treat arthritis – and if these new combinations are found to be effective, these drugs could be made available for treating patients with brain metastases much more quickly.

“It is essential that we find new ways to treat secondary breast cancer in the brain – to improve quality of life and chances of survival for those living with this debilitating disease.

“Our ambition is that by 2050, everyone who develops breast cancer will live. But if we are to achieve this, we desperately need to raise funds for research to find ways to stop the disease spreading. Professor Sibson’s project could help bring us one step closer to our 2050 vision and we’d like to thank our supporters across Oxford who continue to help make our world-class research possible.” 

Fiona Leslie, 49 from Aylesbury, is living with incurable metastatic breast cancer. Having first been diagnosed with breast cancer in 2013, Fiona underwent a mastectomy, radiotherapy and chemotherapy, before learning that her breast cancer had unfortunately spread to her lungs and her spine.

In April 2015, Fiona began receiving revolutionary drug Kadcyla, which kept her disease at bay for over two years, and enabled her to live a relatively normal life in the meantime. However in June 2017, scans showed that Fiona’s breast cancer had spread to her brain.

1. Local incidence and mortality survival statistics were provided on request by Public Health England, April 2017.

Similar stories

Oxford gets £122m funding for healthcare research

Health and care research in Oxford is to receive £122 million in government funding over the next five years to improve diagnosis, treatment and care for NHS patients. The funding was awarded to the city’s two National Institute for Health and Care Research (NIHR) Biomedical Research Centres (BRC).

The Department represented at the European Radiation Research Society annual conference

Researchers from the Department of Oncology attend the prestigious European Radiation Research Society (ERRS) in annual conference in Catania, Italy to present their research in Radiation Oncology.

Funding to research metformin’s ability to delay or prevent cancers driven by the mutated TP53 gene

A research project embedded within the Metformin in Li Fraumeni (MILI) trial will investigate metformin’s mechanism of action when taken as a preventative for mTP53-driven cancers.

Cancer patients remain at higher risk of severe COVID-19 disease despite third dose booster vaccine

A large population-level assessment reveals third dose COVID-19 vaccination is effective for most patients with cancer, but effectiveness is lower than in the general population, particularly in patients who have undergone recent chemotherapy and those with lymphoma.

Time-varying nature of clinical risk factors for pancreatic cancer may aid earlier diagnosis

Body mass index, blood tests, comorbidities and medication use are temporally associated with cancer risk in the three years before a pancreatic cancer diagnosis.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.