Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Group of Professor Kristijan Ramadan has published an original scientific article in Nature Communications today. The article has the first report of a new autophagy receptor TEX264, which may be involved in tumours developing drug resistance.

 

Autophagy (self-eating) is a critical cell process that allows cells to degrade and cycle damaged cell components.  In this case, TEX264 is key to identifying and recycling DNA with a permanent chemical link to a protein.

Covalent attachment of proteins to DNA is a constant problem.  Unless cells can clear their DNA of attached proteins they would die, so we knew they could do this, we just didn’t know how.

 Kristijan Ramadan’s group has uncovered how cells handle one example of this, the formation of a permanent link between DNA and a protein called Topoisomerase 1 to give a Topoisomerase 1 -cleavage complex (Top1-ccs).  Topoisomerase 1 (Top-1) is usually involved in unwinding DNA strands so that they may be easily copied, but if Top-1 gets permanently linked to DNA copying would get stuck and the cell would suffer further DNA damage. 

Specialised DNA repair machinery composed of the p97 ATPase, SPRTN protease and an autophagy receptor TEX264, tackles the linked protein-DNA.   Inactivation of the p97-SPRTN-TEX264 complex leads to accumulation of Top1-ccs and genomic instability. Pathological accumulation of Top1-ccs is linked to neurodegeneration and cancer.

The discovery of TEX264 and role it plays in resolving problems associated with covalent linking of proteins to DNA is important for cancer therapy, as Topoisomerase 1 inhibitors are one of the commonly used chemotherapeutics and they kill cancer cells by accumulation of Top1-ccs. Kristijan Ramadan’s report could be vital in treating tumours which have become resistant to Topoisomerase 1 inhibitors.

 

The full publication can be read here

Similar stories

Funding to research metformin’s ability to delay or prevent cancers driven by the mutated TP53 gene

A research project embedded within the Metformin in Li Fraumeni (MILI) trial will investigate metformin’s mechanism of action when taken as a preventative for mTP53-driven cancers.

Cancer patients remain at higher risk of severe COVID-19 disease despite third dose booster vaccine

A large population-level assessment reveals third dose COVID-19 vaccination is effective for most patients with cancer, but effectiveness is lower than in the general population, particularly in patients who have undergone recent chemotherapy and those with lymphoma.

Time-varying nature of clinical risk factors for pancreatic cancer may aid earlier diagnosis

Body mass index, blood tests, comorbidities and medication use are temporally associated with cancer risk in the three years before a pancreatic cancer diagnosis.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

OUH agrees long COVID research collaboration with Polarean

The collaboration will look at understanding the long-term effects of COVID-19 through cutting-edge MRI analysis.

Lung abnormalities found in long COVID patients with breathlessness

Researchers have identified abnormalities in the lungs of long COVID patients who are experiencing breathlessness that cannot be detected with routine tests.