Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Group of Professor Kristijan Ramadan has published an original scientific article in Nature Communications today. The article has the first report of a new autophagy receptor TEX264, which may be involved in tumours developing drug resistance.

 

Autophagy (self-eating) is a critical cell process that allows cells to degrade and cycle damaged cell components.  In this case, TEX264 is key to identifying and recycling DNA with a permanent chemical link to a protein.

Covalent attachment of proteins to DNA is a constant problem.  Unless cells can clear their DNA of attached proteins they would die, so we knew they could do this, we just didn’t know how.

 Kristijan Ramadan’s group has uncovered how cells handle one example of this, the formation of a permanent link between DNA and a protein called Topoisomerase 1 to give a Topoisomerase 1 -cleavage complex (Top1-ccs).  Topoisomerase 1 (Top-1) is usually involved in unwinding DNA strands so that they may be easily copied, but if Top-1 gets permanently linked to DNA copying would get stuck and the cell would suffer further DNA damage. 

Specialised DNA repair machinery composed of the p97 ATPase, SPRTN protease and an autophagy receptor TEX264, tackles the linked protein-DNA.   Inactivation of the p97-SPRTN-TEX264 complex leads to accumulation of Top1-ccs and genomic instability. Pathological accumulation of Top1-ccs is linked to neurodegeneration and cancer.

The discovery of TEX264 and role it plays in resolving problems associated with covalent linking of proteins to DNA is important for cancer therapy, as Topoisomerase 1 inhibitors are one of the commonly used chemotherapeutics and they kill cancer cells by accumulation of Top1-ccs. Kristijan Ramadan’s report could be vital in treating tumours which have become resistant to Topoisomerase 1 inhibitors.

 

The full publication can be read here

Similar stories

Reprogramming tumour cells using an antimalarial drug

Research

Results from the ATOM clinical trial at the University of Oxford have shown that the anti-malarial drug Atovaquone can reduce very low oxygen tumour environments. This has the potential to make cancers behave less aggressively and to improve the impact of everyday cancer treatments.

Hidden lung damage from COVID-19 revealed in new study

Research Translational Research

Early findings from a study into longer-term damage amongst patients recovering from COVID-19 suggest that the use of cutting-edge scanning techniques may detect previously unseen lung damage.

Oxfordshire-based SCAN pathway wins BMJ award

Innovation Research

A pathway designed to investigate individuals with non-specific but concerning symptoms of cancer wins the BMJ Awards 2020 Cancer Care Team of the Year.

Tackling the serious side effects of cancer treatment in an ageing population

Publication Research

Prof. Anne Kiltie and her team discuss their important work into the effects of radiosensitisation on ageing cancer patients with the CRUK Science Blog.

New digital classification method using AI developed for colorectal cancer

Artificial Intelligence Research Translational Research

Understanding the molecular subtype of a cancer is becoming an importance part of the diagnostic process as it helps a doctor better understand a patient’s prognosis, determine the best course of action for treatment and helps researchers devise new, more-efficient, precision therapies.