Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Kristijan Ramadan's group have published a new paper which shows how cells keep the DNA replication machinery moving when faced with blockers.

The Ramadan Lab, Department of Oncology

Keeping the integrity of our DNA is essential to remain healthy. However, cellular by-products like reactive oxygen species or external insults such as UV light or alcohol constantly damage DNA. DNA replication, an essential cellular process in each proliferative cell, is especially sensitive to DNA damage. During DNA replication, each strand of a double-stranded DNA molecule is copied so that the two daughter cells each get a complete copy. The duplication of DNA is not straightforward.  As the copying machinery moves along the double strand, it usually encounters blockages. These blockages come in various forms, but one very common issue is proteins covalently linked to the DNA by naturally produced linking agents, especially aldehydes. With a protein bonded to DNA, the DNA replication machinery will get jammed, and if unblocked, the genome instability would rise. In fact, people unable to solve this molecular issue correctly age faster and develop early onset cancers.

Previously, researchers have known that a protein called SPRTN was necessary to remove proteins bonded to DNA thanks to its protease activity, and that it was important for faithful DNA replication. However, they didn’t know for sure how SPRTN regulates DNA replication and protects us from accelerated ageing and cancer.

Kristijan Ramadan, Swagata Halder, Ignacio Torrecilla and other co-authors have filled this gap in our knowledge. Their Nature Communications paper published on Wed 17 July ( ) describes how SPRTN activates appropriate checkpoint signals to sustain a smooth DNA replication while removing DNA-bound proteins. It does so by a pathway not envisaged previously. According to current understanding, most defects in DNA replication and damage unfold with the persistent presence of single strands of DNA, which would activate a master protein called ATR, which talks to a middle-management protein called CHK1, which in turn arrests the cell cycle and coordinates the resolution of the damaged or stalled replication fork. However, obstructive DNA-bound proteins cannot activate ATR because there is no single strand formation, so the process of halting replication and repairing the DNA must be initiated by another means. In the paper, the authors describe how SPRTN and CHK1 undertake a mutual activation dance that keeps both proteins working to clear blockages before they cause a problem: SPRTN, a protease able to cut other proteins, cleaves CHK1 to release its active part and trigger its function; CHK1, in turn, adds phosphate groups on SPRTN and stimulates its activity.

This work fills in a huge gap in our knowledge of DNA replication and raises an important set of new questions, one of which is how to use this knowledge to prevent accelerated ageing and to treat cancer.  Kristijan Ramandan and Ignacio Torrecilla have already started looking into this and we look forward to reading about their new findings.


Similar stories

Machine Learning Predicts SETD2 Mutation Status with Unprecedented Accuracy using DNA methylation

In a pan-cancer analysis spanning 24 different cancer type, researchers shed light on the critical role of SETD2 in tumourigenesis.

Oxford to launch UK’s first trials unit dedicated to conducting precision prevention and early detection studies

Oxford researchers have been given a £1 million boost to support their strategy of developing cancer prevention treatments and early diagnostic tools for people at high risk of cancer.

Multi-cancer blood test shows real promise in NHS trial

An NHS trial of a new blood test for more than 50 types of cancer correctly revealed two out of every three cancers in more than 5,000 people who had visited their GP with suspected symptoms, in England or Wales. The test also correctly identified the original site of cancer in 85% of those cases.

The Howat Foundation to fund Chair in Clinical Oncology

Oxford Cancer announce the endowment of a Chair in Clinical Oncology, thanks to generous philanthropic support from The Howat Foundation

New Oxford and Nottingham developed tool uses existing health records to predict people’s risk of developing lung cancer within the next 10 years

A team of researchers from the University of Oxford and the University of Nottingham have developed a new tool, called ‘CanPredict’, aimed at identifying the people most at risk of developing lung cancer over the next 10 years, and put them forward for screening tests earlier, saving time, money and, most importantly, lives.

Scientists find genetic ‘marker’ linked to serious side-effects from skin cancer treatment

New research from the Fairfax Group has identified a genetic marker that could be used to predict a patient’s risk of developing serious side-effects when undergoing immunotherapy treatment for metastatic melanoma.