Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Using funding from CRUK and Psioxus Therapeutics, a team of researchers from the University of Oxford led by Professor Len Seymour, have recently published a paper in Molecular Therapy Oncolytics.

Researchers from the Department of Oncology have been working on creating a therapeutic virus that can be given to cancer patients intravenously. This anti-cancer virus, known as Enadenotucirev, is able to infect and kill cancer cells, while leaving normal cells unharmed. This approach exploits the natural life cycle of the virus, which lyses infected cells in order to release progeny virus particles, allowing the infection to spread from cell to cell through the tumour. The life cycle of some viruses, such as adenoviruses, is intimately dependent on the activities of the cells they infect, and this provides a range of opportunities to engineer viruses that are only active when they encounter the specific environment of a tumour cell.

Cancer cellsThe research in the paper focuses on the unique way that this virus kills cancer cells. By using up all of the cancer cells energy resources the cell loses control of its ion pumps and swells by forming a blister at its surface. Along with this unusual death pathway (known as ‘oncosis’), the cell also displays an increased amount of warning signals at its membrane when killed by the virus. Increased “come eat me” signals create an immune stimulatory environment which then is able to activate the body’s immune system. 

The work has recently been featured on BBC Radio 4 Inside Science and is available as a download

The paper by Arthur Dyer et al is available here.

Similar stories

Scientists find genetic ‘marker’ linked to serious side-effects from skin cancer treatment

New research from the Fairfax Group has identified a genetic marker that could be used to predict a patient’s risk of developing serious side-effects when undergoing immunotherapy treatment for metastatic melanoma.

Oxford gets £122m funding for healthcare research

Health and care research in Oxford is to receive £122 million in government funding over the next five years to improve diagnosis, treatment and care for NHS patients. The funding was awarded to the city’s two National Institute for Health and Care Research (NIHR) Biomedical Research Centres (BRC).

The Department represented at the European Radiation Research Society annual conference

Researchers from the Department of Oncology attend the prestigious European Radiation Research Society (ERRS) in annual conference in Catania, Italy to present their research in Radiation Oncology.

Funding to research metformin’s ability to delay or prevent cancers driven by the mutated TP53 gene

A research project embedded within the Metformin in Li Fraumeni (MILI) trial will investigate metformin’s mechanism of action when taken as a preventative for mTP53-driven cancers.

Cancer patients remain at higher risk of severe COVID-19 disease despite third dose booster vaccine

A large population-level assessment reveals third dose COVID-19 vaccination is effective for most patients with cancer, but effectiveness is lower than in the general population, particularly in patients who have undergone recent chemotherapy and those with lymphoma.

Time-varying nature of clinical risk factors for pancreatic cancer may aid earlier diagnosis

Body mass index, blood tests, comorbidities and medication use are temporally associated with cancer risk in the three years before a pancreatic cancer diagnosis.