Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE/OBJECTIVE: To use a model-based approach to identify a sub-group of patients with locally advanced lung cancer who would benefit from proton therapy compared to photon therapy for reduction of cardiac toxicity. MATERIAL/METHODS: Volumetric modulated arc photon therapy (VMAT) and robust-optimised intensity modulated proton therapy (IMPT) plans were generated for twenty patients with locally advanced lung cancer to give a dose of 70 Gy (relative biological effectiveness (RBE)) in 35 fractions. Cases were selected to represent a range of anatomical locations of disease. Contouring, treatment planning and organs-at-risk constraints followed RTOG-1308 protocol. Whole heart and ub-structure doses were compared. Risk estimates of grade⩾3 cardiac toxicity were calculated based on normal tissue complication probability (NTCP) models which incorporated dose metrics and patients baseline risk-factors (pre-existing heart disease (HD)). RESULTS: There was no statistically significant difference in target coverage between VMAT and IMPT. IMPT delivered lower doses to the heart and cardiac substructures (mean, heart V5 and V30, P < .05). In VMAT plans, there were statistically significant positive correlations between heart dose and the thoracic vertebral level that corresponded to the most inferior limit of the disease. The median level at which the superior aspect of the heart contour began was the T7 vertebrae. There was a statistically significant difference in dose (mean, V5 and V30) to the heart and all substructures (except mean dose to left coronary artery and V30 to sino-atrial node) when disease overlapped with or was inferior to the T7 vertebrae. In the presence of pre-existing HD and disease overlapping with or inferior to the T7 vertebrae, the mean estimated relative risk reduction of grade⩾3 toxicities was 24-59%. CONCLUSION: IMPT is expected to reduce cardiac toxicity compared to VMAT by reducing dose to the heart and substructures. Patients with both pre-existing heart disease and tumour and nodal spread overlapping with or inferior to the T7 vertebrae are likely to benefit most from proton over photon therapy.

Original publication

DOI

10.1016/j.radonc.2019.06.032

Type

Journal article

Journal

Radiother Oncol

Publication Date

11/2020

Volume

152

Pages

151 - 162

Keywords

Cardiac toxicity, Lung cancer, Proton therapy, VMAT