Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microsatellite instability (MSI) characterizes tumors arising in patients with hereditary non-polyposis colorectal cancer (HNPCC) syndrome. HNPCC is a hereditary autosomal dominant disease caused by germline mutations in genes from the DNA (MMR) mismatch repair system. In these tumors, the loss of MMR compromises the genome integrity, allowing the progressive accumulation of mutations and the establishment of a mutator phenotype in a recessive manner. It is not clear, however, whether MSI can be detected in HNPCC carriers before tumor diagnosis. The aim of this study was to evaluate the presence of genetic instability in MMR gene carriers in peripheral blood lymphocytes of carriers and non-carriers members of two HNPCC families harboring a germline MLH1 and MSH2 mutation, respectively. An extensive analysis of the allelic distribution of single molecules of the polyA tract bat26 was performed using a highly sensitive PCR-cloning approach. In non-carriers, the allelic distribution of single bat26 molecules followed a gaussian distribution with no bat26 alleles shorter than (A)21. All mutation carriers showed unstable alleles [(A)20 or shorter] with an overall frequency of 5.6% (102/1814). We therefore suggest that low levels of genomic instability characterize MMR mutation carriers. These observations suggest that somatic mutations accumulate well before tumor diagnosis. Even though it is not clear whether this is due to the presence of a small percentage of cells with lost MMR or due to MMR haploinsufficiency, detection of these short unstable alleles might help in the identification of asymptomatic carriers belonging to families with no detectable MMR gene mutations.

Original publication




Journal article


Hum Mol Genet

Publication Date





235 - 239


Adaptor Proteins, Signal Transducing, Adult, Carrier Proteins, Colorectal Neoplasms, Hereditary Nonpolyposis, DNA-Binding Proteins, Female, Heterozygote, Humans, Male, Microsatellite Repeats, Middle Aged, MutL Protein Homolog 1, MutS Homolog 2 Protein, Mutation, Neoplasm Proteins, Nuclear Proteins, Pedigree, Proteins, Proto-Oncogene Proteins