Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: The purpose of this study was to modify a clinical linear accelerator, making it capable of electron beam ultra-high dose rate (FLASH) irradiation. Modifications had to be quick, reversible, and without interfering with clinical treatments. METHODS: Performed modifications: (1) reduced distance with three setup positions, (2) adjusted/optimized gun current, modulator charge rate and beam steering values for a high dose rate, (3) delivery was controlled with a microcontroller on an electron pulse level, and (4) moving the primary and/or secondary scattering foils from the beam path. RESULTS: The variation in dose for a five-pulse delivery was measured to be 1% (using a diode, 4% using film) during 10 minutes after a warm-up procedure, later increasing to 7% (11% using film). A FLASH irradiation dose rate was reached at the cross-hair foil, MLC, and wedge position, with ≥30, ≥80, and ≥300 Gy/s, respectively. Moving the scattering foils resulted in an increased output of ≥120, ≥250, and ≥1000 Gy/s, at the three positions. The beam flatness was 5% at the cross-hair position for a 20 × 20 and a 10 × 10 cm2 area, with and without both scattering foils in the beam. The beam flatness was 10% at the wedge position for a 6 and 2.5 cm diametric area, with and without the scattering foils in the beam path. CONCLUSIONS: A clinical accelerator was modified to produce ultra-high dose rates, high enough for FLASH irradiation. Future work aims to fine-tune the dose delivery, using the on-board transmission chamber signal and adjusting the dose-per-pulse.

Original publication

DOI

10.1016/j.radonc.2019.01.031

Type

Journal article

Journal

Radiother Oncol

Publication Date

10/2019

Volume

139

Pages

40 - 45

Keywords

FLASH, Irradiation, Linac, Ultra-high dose rate