Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The E2F/DP family of transcription factors play an important role in the control of cell cycle progression. By direct regulatory interactions with the retinoblastoma family of proteins, they integrate extracellular growth promoting signals impinging on the cyclin and cyclin dependent kinase complex during the G1 phase, with cell cycle progression. This is accomplished by direct transcriptional activation of genes required for nucleotide biosynthesis and DNA replication in the S phase. In addition, these transcription factors also play a role in the control of genes involved in regulating G1 and S phase progression including, autoregulatory control, as in the case of E2F1 itself. In this report, we describe the characterisation of the genomic locus encoding DP1, a member of this family. The DP1 gene has a TATA-less promoter and transcription initiates at multiple sites. Using transient transfection assays we have delineated sequences in the upstream region which have promoter or enhancer activity. The DP1 gene was localised to mouse chromosome 8 by metaphase chromosome analysis. We describe a dynamic pattern of DP1 expression using in situ hybridisation on cryostat sections of mouse embryos at various stages of development and a variable level of expression by Northern blot analysis of RNA from various adult tissues.


Journal article



Publication Date





2671 - 2680