Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cyclin-dependent kinase inhibitors (cdkis), such as p21, are believed to control proliferation through an ability to function as stoichiometric antagonists of cyclin-dependent kinases (cdks). The p21 gene is a direct transcriptional target for the p53 protein, and its activation is likely to be important in effecting the p53 response. It is widely accepted that p21 can influence cell cycle progression by controlling the activity of cdks that act on the retinoblastoma tumour suppressor protein (pRb) which, in a hypophosphorylated state, associates with E2F transcription factors to prevent the activation of genes required for progression into S phase. Phosphorylation of pRb by G1 cdk complexes releases E2F and thereby enables progress through the cell cycle. Here, we describe results which suggest a p21-dependent mechanism that facilitates the regulation of E2F through a pathway that is independent of the cdk control of pRb activity. As p21 can associate with E2F subunits, it is possible that these effects are exerted through a complex with E2F. Furthermore, we find that p21 can regulate transcription in vitro. The results suggest that p21 may control E2F activity through a pathway that acts independently of pRb.

Original publication

DOI

10.1038/sj.onc.1202923

Type

Journal article

Journal

Oncogene

Publication Date

23/09/1999

Volume

18

Pages

5381 - 5392