Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Murine F9 embryonal carcinoma (F9 EC) stem cells have an E1a-like transcription activity that is downregulated as these cells differentiate to parietal endoderm. For the adenovirus E2A promoter, this activity requires at least two sequence-specific transcription factors, one that binds the cyclic AMP-responsive element (CRE) and the other, DRTF1, the DNA-binding activity of which is down-regulated as F9 EC cells differentiate. Here we report the characterization of several binding activities in F9 EC cell extracts, referred to as DRTF 1a, 1b and 1c, that recognize the DRTF1 cis-regulatory sequence (-70 to -50 region). These activities can be chromatographically separated but are not distinguishable by DNA sequence specificity. Activity 1a is a detergent-sensitive complex in which DNA binding is regulated by phosphorylation. In contrast, activities 1b and 1c are unaffected by these treatments but exist as multicomponent protein complexes even before DNA binding. Two sets of DNA-binding polypeptides, p50(DR) and p30(DR), affinity purified from F9 EC cell extracts produce complexes 1h and 1c. Both polypeptides appear to be present in the same DNA-bound protein complex and both directly contact DNA. These affinity-purified polypeptides activate transcription in vitro in a binding-site-dependent manner. These data indicate the in F9 EC stem cells, multicomponent differentiation-regulated transcription factors contribute to the cellular E1a-like activity.

Original publication

DOI

10.1128/MCB.11.3.1686

Type

Journal article

Journal

Molecular and Cellular Biology

Publication Date

01/01/1991

Volume

11

Pages

1686 - 1695